Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
no 604450
FP7-NMP-2013-SME-7
PubMed
29546462
DOI
10.1007/s10856-018-6045-5
PII: 10.1007/s10856-018-6045-5
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály * chemická syntéza chemie MeSH
- biomechanika MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybutyráty chemická syntéza chemie MeSH
- kyselina hyaluronová chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemická syntéza chemie MeSH
- polymery chemická syntéza chemie MeSH
- poskytování zdravotní péče MeSH
- tkáňové podpůrné struktury chemie MeSH
- vstřebatelné implantáty * MeSH
- zdravotnické prostředky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- hydroxybutyráty MeSH
- kyselina hyaluronová MeSH
- poly-beta-hydroxybutyrate MeSH Prohlížeč
- polyestery MeSH
- polymery MeSH
In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication.
Zobrazit více v PubMed
J Biomater Sci Polym Ed. 2014;25(4):370-93 PubMed
Int J Pharm. 2013 Oct 15;455(1-2):338-47 PubMed
Acta Biomater. 2015 Apr;16:23-34 PubMed
J Biomed Mater Res A. 2008 Jun 15;85(4):1072-81 PubMed
Carbohydr Polym. 2016 Feb 10;137:255-263 PubMed
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1107-1119 PubMed
J Mater Sci Mater Med. 2016 Nov;27(11):165 PubMed
Int J Biol Macromol. 2018 Jan;106:692-697 PubMed
Carbohydr Polym. 2017 Sep 1;171:220-228 PubMed
Biotechnol Adv. 2017 Mar - Apr;35(2):240-250 PubMed
Int J Biol Macromol. 2016 Mar;84:174-81 PubMed
Biomaterials. 2003 Nov;24(25):4621-9 PubMed
J Funct Biomater. 2017 Feb 13;8(1): PubMed
Biomed Pharmacother. 2017 Feb;86:143-148 PubMed
Mater Sci Eng C Mater Biol Appl. 2013 May 1;33(4):1963-8 PubMed
Tissue Eng Part B Rev. 2013 Dec;19(6):485-502 PubMed
Bioact Mater. 2016 Jul 26;1(1):56-64 PubMed
Materials (Basel). 2017 Aug 29;10(9):null PubMed
Saudi J Biol Sci. 2018 Mar;25(3):545-550 PubMed