Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29652856
PubMed Central
PMC5923322
DOI
10.3390/toxins10040156
PII: toxins10040156
Knihovny.cz E-zdroje
- Klíčová slova
- European Multi Lake Survey, anatoxin, cylindrospermopsin, direct effects, indirect effects, microcystin, spatial distribution, temperature,
- MeSH
- alkaloidy MeSH
- bakteriální toxiny analýza MeSH
- jezera mikrobiologie MeSH
- klimatické změny MeSH
- látky znečišťující vodu analýza MeSH
- mikrocystiny analýza MeSH
- monitorování životního prostředí MeSH
- sinice * MeSH
- teplota MeSH
- toxiny kmene Cyanobacteria MeSH
- tropany analýza MeSH
- uracil analogy a deriváty analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- alkaloidy MeSH
- anatoxin a MeSH Prohlížeč
- bakteriální toxiny MeSH
- cylindrospermopsin MeSH Prohlížeč
- látky znečišťující vodu MeSH
- mikrocystiny MeSH
- toxiny kmene Cyanobacteria MeSH
- tropany MeSH
- uracil MeSH
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
Catalan Institute for Water Research 17003 Girona Spain
Departamento de Sistemática e Ecologia Universidade Federal da Paraíba 58059 970 Paraíba Brasil
Department of Animal Biology Plant Biology and Ecology University of Jaen 23701 Jaen Spain
Department of Aquatic Ecology Netherlands Institute of Ecology 6700 Wageningen The Netherlands
Department of Basic Science Ataturk University 25240 Erzurum Turkey
Department of Bioengineering Bursa Technical University 16310 Bursa Turkey
Department of Biological and Environmental Science University of Jyväskylä 40014 Jyväskylä Finland
Department of Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
Department of Biological Sciences Virginia Tech Blacksburg VA 24061 USA
Department of Biology Balikesir University 10145 Balikesir Turkey
Department of Biology Faculty of Science University of Zagreb 10000 Zagreb Croatia
Department of Biology Giresun University 28100 Giresun Turkey
Department of Biology Hitit University 19040 Corum Turkey
Department of Biology Josip Juraj Strossmayer University of Osijek 31000 Osijek Croatia
Department of Biology Limnological Institute University of Konstanz 78464 Konstanz Germany
Department of Biology Lund University 22362 Lund Sweden
Department of biology Middle East Technical University 6800 Ankara Turkey
Department of Biology Sakarya University 54187 Sakarya Turkey
Department of Biology University of Cádiz 11510 Puerto Real Cádiz Spain
Department of Botany Aristotle University of Thessaloniki 54124 Thessaloniki Greece
Department of Civil Engineering University of A Coruña 15192 A Coruña Spain
Department of Ecology and Genetics Erken Laboratory Uppsala University 76173 Norrtalje Sweden
Department of Ecology and Genetics Limnology Uppsala University 75236 Uppsala Sweden
Department of Ecology University of Granada 18071 Granada Spain
Department of Ecology University of Malaga 29071 Malaga Spain
Department of Environmental Engineering Abant Izzet Baysal University 14280 Bolu Turkey
Department of Fisheries and Aquaculture Ankara University 6100 Ankara Turkey
Department of Forest Engineering University of Cankiri Karatekin 18200 Cankiri Turkey
Department of Freshwater Ecology Norwegian Institute for Water Research 0349 Oslo Norway
Department of Hydrobiology Adam Mickiewicz University 61614 Poznan Poland
Department of Hydrobiology Morava Board Authority 60200 Brno Czech Republic
Department of Hydrobiology University of Bialystok 15245 Bialystok Poland
Department of Limnology and Water Quality AECOM U R S 08036 Barcelona Spain
Department of Marine Biotechnology University of Gdansk 81378 Gdynia Poland
Department of Microbiology and Ecology University of Valencia 46100 Burjassot Spain
Department of Molecular Biology and Genetics Gaziosmanpasa University 60250 Merkez Turkey
Department of Science and Engineering Åbo Akademi University 20520 Åbo Finland
Department of Tourism Recreation and Ecology University of Warmia and Mazury 10 720 Olsztyn Poland
Department ofWater Protection Adam Mickiewicz University 61614 Poznan Poland
Department ofWater Protection Engineering University ofWarmia and Mazury 10 720 Olsztyn Poland
Department ofWater Quality Slovenian Environmental Agency 1000 Ljubljana Slovenia
European Regional Centre for Ecohydrology of the Polish Academy of Sciences 90364 Lodz Poland
Faculty of Aquaculture Mersin University 33160 Mersin Turkey
Faculty of Biology University ofWarsaw 02 096Warsaw Poland
Faculty of Natural Sciences and Mathematics SS Cyril and Methodius University 1000 Skopje Macedonia
Institute of Biochemistry and Biology Potsdam University 14469 Potsdam Germany
Institute of Botany Nature Research Centre Vilnius 08412 Lithuania
Institute of Earth Sciences Jaume Almera ICTJA CSIC 08028 Barcelona Spain
Institute of Environmental Engineering Poznan University of Technology 60965 Poznan Poland
Institute of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 28557 USA
Institute of Nature Conservation Polish Academy of Sciences 31 120 Krakow Poland
Institute of Technology The State University of Applied Sciences 82300 Elblag Poland
Instituto Dom Luiz University of Lisbon 1749016 Lisbon Portugal
Lammi Biological Station University of Helsinki 16900 Lammi Finland
R and D Department Environmental Engineering 3edata 27004 Lugo Spain
RECETOX Faculty of Science Masaryk University 62500 Brno Czech Republic
School of Pharmacy and Life Sciences Robert Gordon University Aberdeen AB10 7GJ UK
Society for the Protection of Prespa 53077 Agios Germanos Greece
Tartu Observatory Faculty of Science and Technology University of Tartu 61602 Tartu Estonia
Water Quality Department Athens Water Supply and Sewerage Company 11146 Athens Greece
Zobrazit více v PubMed
Codd G.A., Meriluoto J., Metcalf J.S. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. Introduction: Cyanobacteria, Cyanotoxins, Their Human Impact, and Risk Management.
Huisman J.M., Matthijs H.C.P., Visser P.M. Harmful Cyanobacteria. Springer Aquatic Ecology Series 3. Springer; Dordrecht, The Netherlands: 2005. p. 243.
Conley D.J., Paerl H.W., Howarth R.W., Boesch D.F., Seitzinger S.P., Havens K.E., Lancelot C., Likens G.E. Controlling eutrophication: Nitrogen and Phosphorus. Science. 2009;323:1014–1015. doi: 10.1126/science.1167755. PubMed DOI
Otten T.G., Xu H., Qin B., Zhu G., Paerl H.W. Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: Implications for water quality management. Environ. Sci. Technol. 2012;46:3480–3488. doi: 10.1021/es2041288. PubMed DOI
United Nations Environment Programme (UNEP) Loss and Damage: The role of Ecosystem Services. United Nations Environment Programme. UNEP; Nairobi, Kenya: 2016.
Intergovernmental Panel on Climate Change (IPCC) In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., White L.L., editors. IPCC; Cambridge, UK: New York, NY, USA: 2014.
Moss B., Kosten S., Meerhoff M., Battarbee R.W., Jeppesen E., Mazzeo N., Havens K., Lacerot G., Liu Z., De Meester L., et al. Allied attack: Climate change and eutrophication. Inland Waters. 2011;1:101–105. doi: 10.5268/IW-1.2.359. DOI
Lurling M., van Oosterhout F., Faassen E. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins. Toxins. 2017;9:64. doi: 10.3390/toxins9020064. PubMed DOI PMC
Rigosi A., Carey C.C., Ibelings B.W., Brookes J.D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 2014;59:99–114. doi: 10.4319/lo.2014.59.1.0099. DOI
Schopf J.W. The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage. In: Whitton B.A., Potts M., editors. The Ecology of Cyanobacteria: Their Diversity in Time and Space. Springer; Dordrecht, The Netherlands: 2002. pp. 13–35.
Carey C.C., Ibelings B.W., Hoffmann E.P., Hamilton D.P., Brookes J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–1407. doi: 10.1016/j.watres.2011.12.016. PubMed DOI
Mantzouki E., Visser P.M., Bormans M., Ibelings B.W. Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat. Ecol. 2015;50:333–350. doi: 10.1007/s10452-015-9526-3. DOI
Ibelings B.W., Mur L.R., Kinsman R., Walsby A.E. Microcystis changes its buoyancy in response to the average irradiance in the surface mixed layer. Archiv für Hydrobiologie. 1991;120:385–401.
Granf G.G., Oliver R.L. Vertical separation of light and available nutrients as a factor causing replacement of green-algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 1982;70:829–844. doi: 10.2307/2260107. DOI
Arnaud C., Bernard C., Spoof L., Bruno M. Microcystins and Nodularins. In: Meriluoto J., Codd G.A., editors. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017.
Hubert J.F., Fastner J. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. Ecology of Cyanobacteria.
Kokociński M., Cameán A.M., Carmeli S., Guzmán-Guillén R., Jos Á., Mankiewicz-Boczek J., Metcalf J.S., Moreno I.M., Prieto A.I., et al. Cylindrospermopsin and Congeners. In: Meriluoto L.S.J., Codd G.A., editors. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017.
Nogueira I.C., Saker M.L., Pflugmacher S., Wiegand C., Vasconcelos V.M. Toxicity of the cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna. Environ. Toxicol. 2004;19:453–459. doi: 10.1002/tox.20050. PubMed DOI
Gilbert J.J. Effect of food availability on the response of planktonic rotifers to a toxic strain of the cyanobacterium Anabaena flos-aquae. Limnol. Oceanogr. 1996;41:1565–1572. doi: 10.4319/lo.1996.41.7.1565. DOI
DeMott W.R., Zhang Q.X., Carmichael W.W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 1991;36:1346–1357. doi: 10.4319/lo.1991.36.7.1346. DOI
Holland A., Kinnear S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar. Drugs. 2013;11:2239–2258. doi: 10.3390/md11072239. PubMed DOI PMC
Capelli C., Ballot A., Cerasino L., Papini A., Salmaso N. Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria) Harmful Algae. 2017;67:1–12. doi: 10.1016/j.hal.2017.05.004. PubMed DOI
Meriluoto J.L., Spoof L., Codd G. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley; Hoboken, NJ, USA: 2017.
Bortoli S., Oliveira-Silva D., Krüger T., Dörr F.A., Copelicolo P., Volmer D.A., Pinto E. Growth and microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient conditions. Revista Brasileira de Farmacognosia. 2014;24:389–398. doi: 10.1016/j.bjp.2014.07.019. DOI
Cerasino L., Capelli C., Salmaso N. A comparative study of the metabolic profiles of common nuisance cyanobacteria in southern perialpine lakes. Adv. Oceanogr. Limnol. 2017;8 doi: 10.4081/aiol.2017.6381. DOI
Neilan B.A., Pearson L.A., Muenchhoff J., Moffitt M.C., Dittmann E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 2013;15:1239–1253. doi: 10.1111/j.1462-2920.2012.02729.x. PubMed DOI
Sivonen K. Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 1990;56:2658–2666. PubMed PMC
Long B.M., Jones G.J., Orr P.T. Cellular microcystin content in N-Limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 2001;67:278–283. doi: 10.1128/AEM.67.1.278-283.2001. PubMed DOI PMC
Rapala J., Sivonen K., Luukkainen R., Niemelä S.I. Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains: A laboratory study. J. Appl. Phycol. 1993;5:581–591. doi: 10.1007/BF02184637. DOI
Rapala J., Sivonen K. Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation and different temperatures. Microb. Ecol. 2008;36:181–192. doi: 10.1007/s002489900105. PubMed DOI
Ibelings B.W., Backerb L.C.W., Kardinaa E.A., Chorus I. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae. 2014;40:63–74. doi: 10.1016/j.hal.2014.10.002. PubMed DOI PMC
Falconer I.R., Choice A., Hosja W. Toxicity of edible mussels (Mytilus edulis) growing naturally in an estuary during a water bloom of the blue-green alga Nodularia spumigena. Environmental Toxicology and Water Quality. Environ. Toxicol. 1992;7:119–123.
Fawell J. Toxins from Blue-Green Algae: Toxicological Assessment of Microcystin-LR. W.R. Centre; Medmenham, UK: 1993. pp. 1–259.
Wolf H.U., Frank C. Toxicity assessment of cyanobacterial toxin mixtures. Environ. Toxicol. 2002;17:395–399. doi: 10.1002/tox.10066. PubMed DOI
Faassen E.J., Lurling M. Occurrence of the microcystins MC-LW and MC-LF in Dutch surface waters and their contribution to total microcystin toxicity. Mar. Drugs. 2013;11:2643–2654. doi: 10.3390/md11072643. PubMed DOI PMC
Chorus I., Bartram J. Toxic Cyanobacteria in Water—A Guide to Their Public Health Consequences, Monitoring and Management. Spon Press; London, UK: 1999.
Ibelings B., Havens K. Cyanobacterial toxins: A qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Adv. Exp. Med. Biol. 2008;619:675–732. PubMed
Loftin K.A., Graham J.L., Hilborn E., Lehmann S., Meyer M.T., Dietze J.E., Griffith C. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae. 2016;56:77–90. doi: 10.1016/j.hal.2016.04.001. PubMed DOI
Chorus I. In: Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in Different Countries. Chorus I., editor. Federal Environmental Agency (Umweltbundesamt); Dessau-Roßlau, Germany: 2005.
Beniston M., Stephenson D.B., Christensen O.B., Ferro C.A.T., Frei C., Goyette S., Halsnaes K., Holt T., Jylhä K., Koffi B., et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007;81:71–95. doi: 10.1007/s10584-006-9226-z. DOI
Vautard R., Gobiet A., Sobolowski S., Kjellström E., Stegehuis A., Watkiss P., Mendlik T., Landgren O., Nikulin G., Teichmann C., et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014;9:034006. doi: 10.1088/1748-9326/9/3/034006. DOI
Hoy A., Hänsel S., Skalak P., Ustrnul Z., Bochnicek O. The extreme European summer of 2015 in a secular perspective. Int. J. Climatol. 2016;37:1–34.
Messineo V., Melchiorre S., Di Corcia A., Gallo P., Bruno M. Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy. Environ. Toxicol. 2010;25:18–27. PubMed
Salmaso N., Cerasino L., Boscaini A., Capelli C. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: Phylogenetic assessment and toxigenic potential. FEMS Microbiol. Ecol. 2016;92:fiw155. doi: 10.1093/femsec/fiw155. PubMed DOI
Pawlik-Skowrońska B., Kalinowska R., Skowroński T. Cyanotoxin diversity and food web bioaccumulation in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms. Harmful Algae. 2013;28:118–125. doi: 10.1016/j.hal.2013.06.002. DOI
Straile D., Jochimsen M.C., Kümmerlin R. The use of long-term monitoring data for studies of planktonic diversity: A cautionary tale from Swiss lakes. Freshw. Biol. 2013;58:1292–1301. doi: 10.1111/fwb.12118. DOI
Litchman E., Klausmeier C.A. Trait-Based Community Ecology of Phytoplankton. Ann. Rev. Ecol. Evolut. Syst. 2008;39:615–639. doi: 10.1146/annurev.ecolsys.39.110707.173549. DOI
Loftin K.A., Dietze J.E., Meyer M.T., Graham J.L., Maksimowicz M.M., Toyne K.D. Total Cylindrospermopsins, Microcystins/Nodularins, and Saxitoxins Data for the 2007 United States Envrionmnetal Protection Agency National Lake Assessment. Kansas Water Science Center, U.S. Geological Survey; Lawrence, KS, USA: 2016.
Kurmayer R., Sivonen K., Salmaso N. Introduction. In: Kurmayer R., Sivonen K., Wilmotte A., Salmaso N., editors. Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2017.
Rantala A., Fewer D.P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K. Phylogenetic evidence for the early evolution of microcystin synthesis. PNAS. 2003;101:568–573. doi: 10.1073/pnas.0304489101. PubMed DOI PMC
Paerl H.W., Otten T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013;65:995–1010. doi: 10.1007/s00248-012-0159-y. PubMed DOI
Paerl H.W., Huisman J. Blooms like it hot. Climate. 2008;320:57–58. PubMed
Visser P.M., Ibelings B.W., Mur L.R., Walsby A.E. Harmful Cyanobacteria. Springer; Dordrecht, The Netherlands: 2005. The ecophysiology of the harmful cyanobacterium Microcystis.
Jang M.H., Jung J.M., Takamura N. Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol. Oceanogr. 2007;52:1454–1466. doi: 10.4319/lo.2007.52.4.1454. DOI
Wiedner C., Visser P.M., Fastner J., Metcalf J.S., Codd G.A., Mur L.R. Effects of Light on the Microcystin Content of Microcystis Strain PCC 7806. Appl. Environ. Microbiol. 2003;69:1475–1481. doi: 10.1128/AEM.69.3.1475-1481.2003. PubMed DOI PMC
Wood S.A., Maier M.Y., Puddick J., Pochon X., Zaiko A., Dietrich D.R., Hamilton D.P. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol. Ecol. 2016;93:fiw234. doi: 10.1093/femsec/fiw234. PubMed DOI
Sivonen K., Jones G. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Chorus I., Bertram J., editors. E & FN Spon; London, UK: 1999. pp. 41–111.
Horst G.P., Sarnelle O., White J.D., Hamilton S.K., Kaul R.B., Bressie J.D. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res. 2014;54:188–198. doi: 10.1016/j.watres.2014.01.063. PubMed DOI
Nimptsch J., Woelfl S., Osorio S., Valenzuela J., Moreira C., Ramos V., Castelo-Branco R., Leão P.N., Vasconcelos V. First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile- a genomic approach. Int. Rev. Hydrobiol. 2016;101:57–68. doi: 10.1002/iroh.201401780. DOI
Mischke U. Cyanobacteria associations in shallow polytrophic lakes: Influence of environmental factors. Acta Oecol. 2003;24:S11–S23. doi: 10.1016/S1146-609X(03)00003-1. DOI
Anneville O., Souissi S., Ibanez F., Ginot V., Druant J.C., Angeli N. Temporal mapping of phytoplankton assemblages in Lake Geneva: Annual and interannual changes in their patterns of succession. Limnol. Oceanogr. 2002;47:1355–1366. doi: 10.4319/lo.2002.47.5.1355. DOI
Anneville O., Souissi S., Gammeter S., Straile D. Seasonal and inter-annual scales of variability in phytoplankton assemblages: Comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshw. Biol. 2004;49:98–115. doi: 10.1046/j.1365-2426.2003.01167.x. DOI
Sevilla E., Martin-Luna B., Vela L., Bes M.T., Peleato M.L., Fillat M.F. Microcystin-LR synthesis as response to nitrogen: Transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology. 2010;19:1167–1173. doi: 10.1007/s10646-010-0500-5. PubMed DOI
Paerl H.W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life. 2014;4:988–1012. doi: 10.3390/life4040988. PubMed DOI PMC
Thomas M.K., Litchman E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia. 2016;763:357–369. doi: 10.1007/s10750-015-2390-2. DOI
Cerasino L., Salmaso N. Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district. Oceanol. Hydrobiol. Stud. 2012;41:54–63. doi: 10.2478/s13545-012-0028-9. DOI
Pires L.M., Sarpe D., Brehm M., Ibelings B.W. Potential synergistic effects of microcystins and bacterial lipopolysaccharides on life history traits of Daphnia galeata raised on low and high food levels. Aquat. Toxicol. 2011;104:230–242. doi: 10.1016/j.aquatox.2011.05.001. PubMed DOI
Freitas E.C., Pinheiro C., Rocha O., Loureiro S. Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial extracts. Harmful Algae. 2014;31:143–152. doi: 10.1016/j.hal.2013.11.004. PubMed DOI
Rzymski P., Poniedzialek B. In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers. Water Res. 2014;66:320–337. doi: 10.1016/j.watres.2014.08.029. PubMed DOI
Lürling M., Faassen E.J. Dog Poisonings associated with Microcystis aeruginosa Bloom in the Netherlands. Toxins. 2013;5:556–567. doi: 10.3390/toxins5030556. PubMed DOI PMC
Fastner J., Beulker C., Geiser B., Hoffmann A., Kröger R., Teske K., Hoppe J., Mundhenk L., Neurath H., Sagebiel D., et al. Fatal Neurotoxicosis in Dogs Associated with Tychoplanktic, Anatoxin-a Producing Tychonema sp. in Mesotrophic Lake Tegel, Berlin. Toxins. 2018;10:60. doi: 10.3390/toxins10020060. PubMed DOI PMC
Netherlands Normalization Institute (NEN) Water: Photometric Determination of the Content of Dissolved Orthophosphate and the Total Content of Phosphorous Compounds by Continuous Flow Analysis. The Netherlands Normalization Institute; Delft, The Netherlands: 1986. NEN 6663. (In Dutch)
Netherlands Normalization Institute (NEN) Water: Photometric Determination of the Content of Ammonium Nitrogen and the Sum of the Contents of Ammoniacal and Organically Bound Nitrogen According to Kjeldahl by Continuous Flow Analysis. Netherlands Normalization Institute; Delft, The Netherlands: 1990. NEN-6646.
Van der Staay G.W.M., Brouwer A., Baard R.L., van Mourik F. Separation of photosystems I and II from the oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of Chlb binding antennae with PS II. Biochim. Biophys. Acta. 1992;1102:220–228. doi: 10.1016/0005-2728(92)90103-9. DOI
Leach T.H., Beisner B.E., Carey C.C., Pernica P., Rose K.C., Huot Y., Brentrup J.A., Domaizon I., Grossart H.-P., Ibelings B.W., et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2017;63:628–646. doi: 10.1002/lno.10656. DOI
Winslow L.A., Read J.S., Woolway R.I., Brentrup J.A., Leach T.H., Zwart J.A. Zenodo; [(accessed on 6 October 2017)]. rLakeAnalyzer: Lake Physics Tools. Available online: https://zenodo.org/record/1003169#.Ws82F9NubEY.
Chen C.T.A., Millero F.J. Thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 1986;31:657–662. doi: 10.4319/lo.1986.31.3.0657. DOI
Scheffer M., Rinaldi S., Gragnani A., Mur L.R., van Nes E.H. On the Dominance of Filamentous Cyanobacteria in Shallow, Turbid Lakes. Ecology. 1997;78:272–282. doi: 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2. DOI
Legendre P., Legendre L. Numerical Ecology. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2012.
Legendre P., Gallagher E.D. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–280. doi: 10.1007/s004420100716. PubMed DOI
R Development Core Team R . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2009.
Oksanen J., Kindt R., Legendre P., O’Hara B., Henry M., Stevens H. The vegan package. Community Ecol. Package. 2007;10:631–637.
Venables W.N., Ripley B.D. Modern Applied Statistics with S-Plus. 4th ed. Springer; New York, NY, USA: 2002.