Difference in Serum Endostatin Levels in Diabetic Patients with Critical Limb Ischemia Treated by Autologous Cell Therapy or Percutaneous Transluminal Angioplasty
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29860903
PubMed Central
PMC6168989
DOI
10.1177/0963689718775628
Knihovny.cz E-resources
- Keywords
- angiogenic factors, autologous cell therapy, critical limb ischemia, endostatin,
- MeSH
- Angioplasty * MeSH
- Antigens, CD34 analysis MeSH
- Transplantation, Autologous MeSH
- Cell- and Tissue-Based Therapy MeSH
- Diabetes Mellitus, Type 2 blood complications MeSH
- Diabetic Foot blood therapy MeSH
- Endostatins blood MeSH
- Neovascularization, Physiologic MeSH
- Ischemia blood therapy MeSH
- Stem Cells cytology MeSH
- Extremities blood supply MeSH
- Middle Aged MeSH
- Humans MeSH
- Peripheral Vascular Diseases therapy MeSH
- Aged MeSH
- Stem Cell Transplantation * MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, CD34 MeSH
- Endostatins MeSH
The aim of this study was to compare the serum levels of the anti-angiogenic factor endostatin (S-endostatin) as a potential marker of vasculogenesis after autologous cell therapy (ACT) versus percutaneous transluminal angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI). A total of 25 diabetic patients with CLI treated in our foot clinic during the period 2008-2014 with ACT generating potential vasculogenesis were consecutively included in the study; 14 diabetic patients with CLI who underwent PTA during the same period were included in a control group in which no vasculogenesis had occurred. S-endostatin was measured before revascularization and at 1, 3, and 6 months after the procedure. The effect of ACT and PTA on tissue ischemia was confirmed by transcutaneous oxygen pressure (TcPO2) measurement at the same intervals. While S-endostatin levels increased significantly at 1 and 3 months after ACT (both P < 0.001), no significant change of S-endostatin after PTA was observed. Elevation of S-endostatin levels significantly correlated with an increase in TcPO2 at 1 month after ACT ( r = 0.557; P < 0.001). Our study showed that endostatin might be a potential marker of vasculogenesis because of its significant increase after ACT in diabetic patients with CLI in contrast to those undergoing PTA. This increase may be a sign of a protective feedback mechanism of this anti-angiogenic factor.
Department of Immunogenetics Institute for Clinical and Experimental Medicine Prague Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Diabetes Centre Tameside Hospital NHS Foundation Trust and University of Manchester Lancashire UK
See more in PubMed
Dua A, Lee CJ. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech Vasc Interv Radiol. 2016;19(2):91–5. PubMed
Brownrigg JR, Schaper NC, Hinchliffe RJ. Diagnosis and assessment of peripheral arterial disease in the diabetic foot. Diabet Med. 2015;32(6):738–47. PubMed
Benitez E, Sumpio BJ, Chin J, Sumpio BE. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg. 2014;27(1):3–15. PubMed
Compagna R, Amato B, Massa S, Amato M, Grande R, Butrico L, de Franciscis S, Serra R. Cell therapy in patients with critical limb ischemia. Stem Cells Int. 2015:931420. PubMed PMC
Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60. PubMed
Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209(1):10–17. PubMed
Liu Y, Xu Y, Fang F, Zhang J, Guo L, Weng Z. Therapeutic efficacy of stem cell-based therapy in peripheral arterial disease: A meta-analysis. PLoS One. 2015;10(4): e01250 32. PubMed PMC
Ai M, Yan CF, Xia FC, Zhou SL, He J, Li CP. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy. 2016;18(6):712–24. PubMed
Aghi M, Chiocca EA. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther. 2005;12(6):994–1005. PubMed
Li S, Zhou B, Han ZC. Therapeutic neovascularization by transplantation of mobilized peripheral blood mononuclear cells for limb ischemia. A comparison between CD34+ and CD34– mononuclear cells. Thromb Haemost. 2006;95(2):301–11. PubMed
Mackie AR, Losordo DW. . CD34-positive stem cells: In the treatment of heart and vascular disease in human beings. Tex Heart Inst J. 2011;38(5):474–85. PubMed PMC
Fadini GP, Rigato M, Cappellari R, Bonora BM, Avogaro A. Long-term prediction of cardiovascular outcomes by circulating CD34+ and CD34+CD133+ stem cells in patients with type 2 diabetes. Diabetes Care. 2017;40(1):125–31. PubMed
Zubair AC, Malik S, Paulsen A, Ishikawa M, McCoy C, Adams PX, Amrani D, Costa M. Evaluation of mobilized peripheral blood CD34(+) cells from patients with severe coronary artery disease as a source of endothelial progenitor cells. Cytotherapy. 2010;12(2):178–89. PubMed PMC
Hristov M, Weber C. Progenitor cell trafficking in the vascular wall. J Thromb Haemost. 2009;7(Suppl 1):31–34. PubMed
Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. News Physiol Sci. 1999;14:121–5. PubMed
Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: Angiogenic and cell therapies. Circ Res. 2015;116(9):1561–78. PubMed PMC
Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103(4):696–709. PubMed
Aranguren XL, Verfaillie CM, Luttun A. Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med (Berl). 2009;87(1):3–16. PubMed
Dubsky M, Jirkovska A, Bem R, Fejfarova V, Varga M, Kolesar L, Pagacova L, Sykova E, Jude EB. Role of serum levels of angiogenic cytokines in assessment of angiogenesis after stem cell therapy of diabetic patients with critical limb ischemia. Cell Transplant. 2014;23(12):1517–23. PubMed
Di Vita G, Patti R, D’Agostino P, Arcoleo F, Caruso G, Arcara M, Davi V, Cillari E. Serum VEGF and B-FGF profiles after tension-free or conventional hernioplasty. Langenbecks Arch Surg. 2005;390(6):528–33. PubMed
Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: Mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95(4):354–63. PubMed
Ribatti D. Endogenous inhibitors of angiogenesis: A historical review. Leuk Res. 2009;33(5):638–44. PubMed
Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev. 2016;97:156–73. PubMed PMC
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta. 2015;1850(12):2422–38. PubMed PMC
Wang H, Chen Y, Lu XA, Liu G, Fu Y, Luo Y. Endostatin prevents dietary-induced obesity by inhibiting adipogenesis and angiogenesis. Diabetes. 2015;64(7):2442–56. PubMed
Carlsson AC, Ostgren CJ, Lanne T, Larsson A, Nystrom FH, Arnlov J. The association between endostatin and kidney disease and mortality in patients with type 2 diabetes. Diabetes Metab. 2016;42(5):351–7. PubMed
Ruge T, Carlsson AC, Larsson A, Arnlov J. Endostatin: A promising biomarker in the cardiovascular continuum? Biomark Med. 2017;11(10):905–16. PubMed
Al Mheid I, Quyyumi AA. Cell therapy in peripheral arterial disease. Angiology. 2008;59(6):705–16. PubMed
Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Nemcova A, Sixta B, Chlupac J, Peregrin JH, Sykova E, Jude EB. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014;16(12):1733–8. PubMed
Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Group TIW, Bell K, Caporusso J, Durand-Zaleski I, Komori K, Lammer J, Liapis C, Novo S, Razavi M, Robbs J, Schaper N, Shigematsu H, Sapoval M, White C, White J, Clement D, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1): S1–75. PubMed
Graziani L, Silvestro A, Bertone V, Manara E, Andreini R, Sigala A, Mingardi R, De Giglio R. Vascular involvement in diabetic subjects with ischemic foot ulcer: A new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33(4):453–60. PubMed
Schuch G, Heymach JV, Nomi M, Machluf M, Force J, Atala A, Eder JP, Jr., Folkman J, Soker S. Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res. 2003;63(23):8345–50. PubMed
Fu Y, Tang H, Huang Y, Song N, Luo Y. Unraveling the mysteries of endostatin. IUBMB Life. 2009;61(6):613–26. PubMed
Folkman J. Antiangiogenesis in cancer therapy: endostatin and its mechanisms of action. Exp Cell Res. 2006;312(5):594–607. PubMed
Xue L, Chen H, Zhang T, Chen J, Geng Z, Zhao Y. Changes in serum vascular endothelial growth factor and endostatin concentrations associated with circulating endothelial progenitor cells after acute ischemic stroke. Metab Brain Dis. 2017;32(2):641–8. PubMed
Kawamoto A, Katayama M, Handa N, Kinoshita M, Takano H, Horii M, Sadamoto K, Yokoyama A, Yamanaka T, Onodera R, Kuroda A, Baba R, Kaneko Y, Tsukie T, Kurimoto Y, Okada Y, Kihara Y, Morioka S, Fukushima M, Asahara T. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: A phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27(11):2857–64. PubMed
Dong Z, Chen B, Fu W, Wang Y, Guo D, Wei Z, Xu X, Mendelsohn FO. Transplantation of purified CD34+ cells in the treatment of critical limb ischemia. J Vasc Surg. 2013;58(2):404–411 e403. PubMed
Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, Necpal R, Madaricova T, Paulis L, Vulev I. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther. 2016;7(1):116. PubMed PMC
Qin Q, Qian J, Ma J, Ge L, Ge J. Relationship between thrombospondin-1, endostatin, angiopoietin-2, and coronary collateral development in patients with chronic total occlusion. Medicine (Baltimore). 2016;95(33): e4524. PubMed PMC
Golledge J, Clancy P, Hankey GJ, Yeap BB, Norman PE. Serum endostatin concentrations are higher in men with symptoms of intermittent claudication. Dis Markers. 2014:298239. PubMed PMC
Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004;94(2):230–8. PubMed