The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29978954
PubMed Central
PMC6085911
DOI
10.1002/brb3.1057
Knihovny.cz E-resources
- Keywords
- M4 muscarinic receptor, biorhythm, intergeniculate leaflet, motor activity, motor cortex, sex differences, striatum, suprachiasmatic nuclei, temperature, thalamus,
- MeSH
- Behavior, Animal physiology MeSH
- Models, Animal MeSH
- Brain physiology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Periodicity * MeSH
- Motor Activity genetics physiology MeSH
- Receptor, Muscarinic M4 deficiency genetics MeSH
- Sex Factors MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptor, Muscarinic M4 MeSH
OBJECTIVES: M4 muscarinic receptors (MR) presumably play a role in motor coordination. Previous studies have shown different results depending on genetic background and number of backcrosses. However, no attention has been given to biorhythms. MATERIAL AND METHODS: We therefore analyzed biorhythms under a light/dark cycle obtained telemetrically in intact animals (activity, body temperature) in M4 KO mice growth on the C57Bl6 background using ChronosFit software. Studying pure effects of gene knockout in daily rhythms is especially important knowledge for pharmacological/behavioral studies in which drugs are usually tested in the morning. RESULTS: We show that M4 KO mice motor activity does not differ substantially from wild-type mice during light period while in the dark phase (mice active part of the day), the M4 KO mice reveal biorhythm changes in many parameters. Moreover, these differences are sex-dependent and are evident in females only. Mesor, night-day difference, and night value were doubled or tripled when comparing female KO versus male KO. Our in vitro autoradiography demonstrates that M4 MR proportion represents 24% in the motor cortex (MOCx), 30% in the somatosensory cortex, 50% in the striatum, 69% in the thalamus, and 48% in the intergeniculate leaflet (IGL). The M4 MR densities were negligible in the subparaventricular zone, the posterior hypothalamic area, and in the suprachiasmatic nuclei. CONCLUSIONS: We conclude that cholinergic signaling at M4 MR in brain structures such as striatum, MOCx, and probably with the important participation of IGL significantly control motor activity biorhythm. Animal activity differs in the light and dark phases, which should be taken into consideration when interpreting the results.
See more in PubMed
Abrahamson, E. E. , & Moore, R. Y. (2006). Lesions of suprachiasmatic nucleus efferents selectively affect rest‐activity rhythm. Molecular and Cellular Endocrinology, 252, 46–56. 10.1016/j.mce.2006.03.036 PubMed DOI
Arraj, M. , & Lemmer, B. (2006). Circadian rhythms in heart rate, motility, and body temperature of wild‐type C57 and eNOS knock‐out mice under light‐dark, free‐run, and after time zone transition. Chronobiology International, 23, 795–812. 10.1080/07420520600827111 PubMed DOI
Bailey, M. , & Silver, R. (2014). Sex differences in circadian timing systems: Implications for disease. Frontiers in Neuroendocrinology, 35, 111–139. 10.1016/j.yfrne.2013.11.003 PubMed DOI PMC
Beeri, R. , Andres, C. , Lev‐Lehman, E. , Timberg, R. , Huberman, T. , Shani, M. , & Soreq, H. (1995). Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Current Biology, 5, 1063–1073. 10.1016/S0960-9822(95)00211-9 PubMed DOI
Bina, K. G. , Rusak, B. , & Semba, K. (1993). Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. The Journal of Comparative Neurology, 335, 295–307. 10.1002/(ISSN)1096-9861 PubMed DOI
Bina, K. G. , Rusak, B. , & Wilkinson, M. (1998). Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Research, 797, 143–153. 10.1016/S0006-8993(98)00374-6 PubMed DOI
Blattner, M. S. , & Mahoney, M. M. (2014). Estrogen receptor 1 modulates circadian rhythms in adult female mice. Chronobiology International, 31, 637–644. 10.3109/07420528.2014.885528 PubMed DOI
Blizard, D. A. , Lippman, H. R. , & Chen, J. J. (1975). Sex differences in open‐field behavior in the rat: The inductive and activational role of gonadal hormones. Physiology & Behavior, 14, 601–608. 10.1016/0031-9384(75)90188-2 PubMed DOI
Bymaster, F. P. , Carter, P. A. , Zhang, L. , Falcone, J. F. , Stengel, P. W. , Cohen, M. L. , … Felder, C. C. (2001). Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sciences, 68, 2473–2479. 10.1016/S0024-3205(01)01041-4 PubMed DOI
Bymaster, F. P. , McKinzie, D. L. , Felder, C. C. , & Wess, J. (2003). Use of M1‐M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochemical Research, 28, 437–442. 10.1023/A:1022844517200 PubMed DOI
Cachope, R. , & Cheer, J. F. (2014). Local control of striatal dopamine release. Frontiers in Behavioural Neurosciences, 8, 188. PubMed PMC
Crusio, W. E. , Goldowitz, D. , Holmes, A. , & Wolfer, D. (2009). Standards for the publication of mouse mutant studies. Genes, Brain and Behavior, 8, 1–4. 10.1111/j.1601-183X.2008.00438.x PubMed DOI
Diez‐Noguera, A. , & Cambras, T. (1990). Sex differences in the development of the motor activity circadian rhythm in rats under constant light. Physiology & Behavior, 47, 889–894. 10.1016/0031-9384(90)90014-U PubMed DOI
Duysen, E. G. , & Lockridge, O. (2006). Phenotype comparison of three acetylcholinesterase knockout strains. Journal of Molecular Neuroscience, 30, 91–92. 10.1385/JMN:30:1:91 PubMed DOI
Eglen, R. (2012). Overview of muscarinic receptor subtypes In Fryer A. D., Christopoulos A., & Nathanson N. M. (Eds.), Muscarinic receptors (pp. 3–28). Berlin, Heidelberg: Springer; 10.1007/978-3-642-23274-9 DOI
El‐Bakri, N. K. , Adem, A. , Suliman, I. A. , Mulugeta, E. , Karlsson, E. , Lindgren, J. U. , … Islam, A. (2002). Estrogen and progesterone treatment: Effects on muscarinic M4 receptor subtype in the rat brain. Brain Research, 948, 131–137. 10.1016/S0006-8993(02)02962-1 PubMed DOI
Farar, V. , Mohr, F. , Legrand, M. , Lamotte d'Incamps, B. , Cendelin, J. , Leroy, J. , … Krejci, E. (2012). Near complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. Journal of Neurochemistry, 122, 1065–1080. 10.1111/j.1471-4159.2012.07856.x PubMed DOI
Farar, V. , & Myslivecek, J. (2016). Autoradiography assessment of muscarinic receptors in the central nervous system In Myslivecek J., & Jakubik J. (Eds.), Muscarinic receptor: From structure to animal models (pp. 159–180). New York, NY: Springer; 10.1007/978-1-4939-2858-3 DOI
Fink‐Jensen, A. , Schmidt, L. S. , Dencker, D. , Schülein, C. , Wess, J. , Wörtwein, G. , & Woldbye, D. P. D. (2011). Antipsychotic‐induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. European Journal of Pharmacology, 656, 39–44. 10.1016/j.ejphar.2011.01.018 PubMed DOI PMC
Fragkouli, A. , Stamatakis, A. , Zographos, E. , Pachnis, V. , & Stylianopoulou, F. (2006). Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function. Neuroscience, 137, 1153–1164. 10.1016/j.neuroscience.2005.10.037 PubMed DOI
Gillette, M. U. , Buchanan, G. F. , Artinian, L. , Hamilton, S. E. , Nathanson, N. M. , & Liu, C. (2001). Role of the M1 receptor in regulating circadian rhythms. Life Sciences, 68, 2467–2472. 10.1016/S0024-3205(01)01040-2 PubMed DOI
Gomeza, J. , Zhang, L. , Kostenis, E. , Felder, C. , Bymaster, F. , Brodkin, J. , … Wess, J. (1999). Enhancement of D1 dopamine receptor‐mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proceedings of the National Academy of Sciences, 96, 10483–10488. 10.1073/pnas.96.18.10483 PubMed DOI PMC
Gorski, R. A. , Gordon, J. H. , Shryne, J. E. , & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333–346. 10.1016/0006-8993(78)90723-0 PubMed DOI
Groenewegen, H. J. (2003). The basal ganglia and motor control. Neural Plasticity, 10, 107–120. 10.1155/NP.2003.107 PubMed DOI PMC
Hughes, A. T. L. , & Piggins, H. D. (2012) Chapter 18 ‐ Feedback actions of locomotor activity to the circadian clock In Andries Kalsbeek M. M. T. R. & Russell G. F. (Eds), Progress in brain research (pp. 305–336). New York, NY: Elsevier. PubMed
Hut, R. A. , & Van der Zee, E. A. (2011). The cholinergic system, circadian rhythmicity, and time memory. Behavioral Brain Research, 221, 466–480. 10.1016/j.bbr.2010.11.039 PubMed DOI
Karasawa, H. , Taketo, M. M. , & Matsui, M. (2003). Loss of anti‐cataleptic effect of scopolamine in mice lacking muscarinic acetylcholine receptor subtype 4. European Journal of Pharmacology, 468, 15–19. 10.1016/S0014-2999(03)01642-X PubMed DOI
Koshimizu, H. , Leiter, L. , & Miyakawa, T. (2012). M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Molecular Brain, 5, 10 10.1186/1756-6606-5-10 PubMed DOI PMC
Kow, R. L. , & Nathanson, N. M. (2012). Structural biology: Muscarinic receptors become crystal clear. Nature, 482, 480–481. 10.1038/482480a PubMed DOI
Kramer, A. , Yang, F.‐C. , Snodgrass, P. , Li, X. , Scammell, T. E. , Davis, F. C. , & Weitz, C. J. (2001). Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science, 294, 2511–2515. 10.1126/science.1067716 PubMed DOI
Kruse, A. C. , Ring, A. M. , Manglik, A. , Hu, J. , Hu, K. , Eitel, K. , … Kobilka, B. K. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 504, 101–106. 10.1038/nature12735 PubMed DOI PMC
Kuljis, D. A. , Loh, D. H. , Truong, D. , Vosko, A. M. , Ong, M. L. , McClusky, R. , … Colwell, C. S. (2013). Gonadal‐ and sex‐chromosome‐dependent sex differences in the circadian system. Endocrinology, 154, 1501–1512. 10.1210/en.2012-1921 PubMed DOI PMC
Ma, W. , Miao, Z. , & Novotny, M. V. (1998). Role of the adrenal gland and adrenal‐mediated chemosignals in suppression of estrus in the house mouse: The lee‐boot effect revisited. Biology of Reproduction, 59, 1317–1320. 10.1095/biolreprod59.6.1317 PubMed DOI
Martins‐Silva, C. , De Jaeger, X. , Guzman, M. S. , Lima, R. D. F. , Santos, M. S. , Kushmerick, C. , … Prado, V. F. (2011). Novel strains of mice deficient for the vesicular acetylcholine transporter: Insights on transcriptional regulation and control of locomotor behavior. PLoS ONE, 6, e17611 10.1371/journal.pone.0017611 PubMed DOI PMC
Miyakawa, T. , Yamada, M. , Duttaroy, A. , & Wess, J. (2001). Hyperactivity and intact hippocampus‐dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. The Journal of Neuroscience, 21, 5239–5250. 10.1523/JNEUROSCI.21-14-05239.2001 PubMed DOI PMC
Morgan, M. A. , & Pfaff, D. W. (2001). Effects of estrogen on activity and fear‐related behaviors in mice. Hormones and Behavior, 40, 472–482. 10.1006/hbeh.2001.1716 PubMed DOI
Morin, L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Experimental Neurology, 243, 4–20. 10.1016/j.expneurol.2012.06.026 PubMed DOI PMC
Myslivecek, J. , Farar, V. , & Valuskova, P. (2017). M(4) muscarinic receptors and locomotor activity regulation. Physiological Research, 66, S443–S455. PubMed
Ogawa, S. , Chan, J. , Gustafsson, J.‐A. , Korach, K. S. , & Pfaff, D. W. (2003). Estrogen increases locomotor activity in mice through estrogen receptor alpha: Specificity for the type of activity. Endocrinology, 144, 230–239. 10.1210/en.2002-220519 PubMed DOI
Paxinos, G. , & Franklin, K. B. J. (2008). The mouse brain in stereotaxic coordinates. New York, NY: Elsevier Academic Press.
van den Pol, A. N. , & Tsujimoto, K. L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 1049–1086. PubMed
Reiner, C. , & Nathanson, N. (2012). Muscarinic receptor trafficking In Fryer A. D., Christopoulos A., & Nathanson N. M. (Eds.), Muscarinic receptors (pp. 61–78). Berlin, Heidelberg: Springer; 10.1007/978-3-642-23274-9 PubMed DOI
Roedel, A. , Storch, C. , Holsboer, F. , & Ohl, F. (2006). Effects of light or dark phase testing on behavioural and cognitive performance in DBA mice. Laboratory Animals, 40, 371–381. 10.1258/002367706778476343 PubMed DOI
Schmidt, L. , Thomsen, M. , Weikop, P. , Dencker, D. , Wess, J. , Woldbye, D. D. , … Fink‐Jensen, A. (2011). Increased cocaine self‐administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology (Berlin), 216, 367–378. 10.1007/s00213-011-2225-4 PubMed DOI PMC
Shapovalova, K. B. , Kamkina, Y. V. , & Mysovskii, D. A. (2005). The effects of microinjection of the selective blocker of muscarinic M1 receptors pirenzepine into the neostriatum on the motor behavior of rats. Neuroscience and Behavioral Physiology, 35, 589–594. 10.1007/s11055-005-0098-x PubMed DOI
Shin, J. H. , Adrover, M. F. , Wess, J. , & Alvarez, V. A. (2015). Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proceedings of the National Academy of Sciences, 112, 8124–8129. 10.1073/pnas.1508846112 PubMed DOI PMC
Turner, J. , Hughes, L. F. , & Toth, L. A. (2010). Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4. Life Sciences, 86, 158–169. 10.1016/j.lfs.2009.11.019 PubMed DOI
Tzavara, E. T. , Bymaster, F. P. , Davis, R. J. , Wade, M. R. , Perry, K. W. , Wess, J. , … Nomikos, G. G. (2004). M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: Relevance to the pathophysiology and treatment of related central nervous system pathologies. The FASEB Journal, 18, 1410–1412. 10.1096/fj.04-1575fje PubMed DOI
Valuskova, P. , Farar, V. , Forczek, S. , Krizova, I. , & Myslivecek, J. (2018). Autoradiography of 3H‐pirenzepine and 3H‐AFDX‐384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Frontiers in Pharmacology, 9, 124 10.3389/fphar.2018.00124 PubMed DOI PMC
Wess, J. , Duttaroy, A. , Zhang, W. , Gomeza, J. , Cui, Y. , Miyakawa, T. , … Yamada, M. (2003). M1‐M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors and Channels, 9, 279–290. 10.3109/10606820308262 PubMed DOI
Wollnik, F. (1985). Sex differences in the daily pattern of locomotor activity in laboratory rats. Naturwissenschaften, 72, 158–161. 10.1007/BF00490408 DOI
Woolley, M. L. , Carter, H. J. , Gartlon, J. E. , Watson, J. M. , & Dawson, L. A. (2009). Attenuation of amphetamine‐induced activity by the non‐selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. European Journal of Pharmacology, 603, 147–149. 10.1016/j.ejphar.2008.12.020 PubMed DOI
Yang, J.‐J. , Wang, Y.‐T. , Cheng, P.‐C. , Kuo, Y.‐J. , & Huang, R.‐C. (2010). Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. Journal of Neurophysiology, 103, 1397–1409. 10.1152/jn.00877.2009 PubMed DOI
Zhang, W. , Basile, A. S. , Gomeza, J. , Volpicelli, L. A. , Levey, A. I. , & Wess, J. (2002). Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock‐out mice. Journal of Neuroscience, 22, 1709–1717. 10.1523/JNEUROSCI.22-05-01709.2002 PubMed DOI PMC
Multitargeting nature of muscarinic orthosteric agonists and antagonists
Variability in the Drug Response of M4 Muscarinic Receptor Knockout Mice During Day and Night Time