Inter-comparison of quantitative imaging of lutetium-177 (177Lu) in European hospitals
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HLT11
European Metrology Research Programme
EP/L505675/1
Engineering and Physical Sciences Research Council
PubMed
30069805
PubMed Central
PMC6070453
DOI
10.1186/s40658-018-0213-z
PII: 10.1186/s40658-018-0213-z
Knihovny.cz E-zdroje
- Klíčová slova
- Lu-177, Lutetium, Molecular radiotherapy, PRRT, Quantitative imaging, SPECT/CT,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This inter-comparison exercise was performed to demonstrate the variability of quantitative SPECT/CT imaging for lutetium-177 (177Lu) in current clinical practice. Our aim was to assess the feasibility of using international inter-comparison exercises as a means to ensure consistency between clinical sites whilst enabling the sites to use their own choice of quantitative imaging protocols, specific to their systems. Dual-compartment concentric spherical sources of accurately known activity concentrations were prepared and sent to seven European clinical sites. The site staff were not aware of the true volumes or activity within the sources-they performed SPECT/CT imaging of the source, positioned within a water-filled phantom, using their own choice of parameters and reported their estimate of the activities within the source. RESULTS: The volumes reported by the participants for the inner section of the source were all within 29% of the true value and within 60% of the true value for the outer section. The activities reported by the participants for the inner section of the source were all within 20% of the true value, whilst those reported for the outer section were up to 83% different to the true value. CONCLUSIONS: A variety of calibration and segmentation methods were used by the participants for this exercise which demonstrated the variability of quantitative imaging across clinical sites. This paper presents a method to assess consistency between sites using different calibration and segmentation methods.
Department of Medical Radiation Physics Clinical Sciences Lund Lund University Lund Sweden
Erasmus University Medical Centre Rotterdam Netherlands
Motol University Hospital Prague Czech Republic
National Physical Laboratory Teddington UK
Royal Surrey County Hospital NHS Foundation Trust Guildford UK
The Christie NHS Foundation Trust Manchester UK
The Royal Marsden NHS Foundation Trust Sutton UK
Zobrazit více v PubMed
Be M, et al. Table of radionuclides (Vol. 8 - A = 41 to 198) Paris: Bureau International des Poids et Mesures; 2016.
Berker Y, et al. Activity quantification combining conjugate-view planar scintigraphies and SPECT/CT data for patient-specific 3-D dosimetry in radionuclide therapy. Eur J Nucl Med Mol. 2011;I(38):2173–2185. doi: 10.1007/s00259-011-1889-7. PubMed DOI
Bodei L, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol. 2013;I(40):800–816. PubMed PMC
Brans B, et al. Clinical radionuclide therapy dosimetry: the quest for the ‘holy gray.’. Eur J Nucl Med Mol. 2007;I(34):772–786. doi: 10.1007/s00259-006-0338-5. PubMed DOI PMC
Dash A, Pillai MRA, Knapp FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49:85-107. PubMed PMC
Data Spectrum Corporation. 2007a Data sheet: hollow sphere and spherical shells. DSC, Durham, US. http://www.spect.com/pub/Special_Hollow_Spheres.doc.pdf (August 4, 2017).
Data Spectrum Corporation. 2007b. Data sheet: NEMA IEC body phantom set. DSC, Durhum, US. http://www.spect.com/pub/NEMA_IEC_Body_Phantom_Set.pdf. Accessed 7 Dec 2017.
Dewaraja Y, et al. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med. 2005;46:840–849. PubMed PMC
Dewaraja YK, et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310–25. doi: 10.2967/jnumed.111.100123. PubMed DOI PMC
Dewaraja YK, et al. MIRD pamphlet no. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013;54(12):2182–8. doi: 10.2967/jnumed.113.122390. PubMed DOI PMC
de Dreuille O, et al. Bone equivalent liquid solution to assess accuracy of transmission measurements in SPECT and PET. IEEE Trans Nucl Sci. 1997;44(3):1186–1190. doi: 10.1109/23.596985. DOI
Eaton B, et al. Quantitative dosimetry for yttrium-90 radionuclide therapy: tumor dose predicts fluorodeoxyglucose positron emission tomography response in hepatic metastatic melanoma. J Vasc Interv Radiol. 2014;25:288–295. doi: 10.1016/j.jvir.2013.08.021. PubMed DOI
Flux G, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59. doi: 10.1078/0939-3889-00291. PubMed DOI
Flux G, Bardiès M, Lassmann M. Biting the magic bullet: celebrating a decade of the EANM dosimetry committee. Eur J Nucl Med Mol I. 2014;41:1–3. doi: 10.1007/s00259-013-2589-2. PubMed DOI
Frey E, Tsui B. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Nucl Sci Symp Conf Rec. 1996;2:1082–1086.
Gustafsson J, Sundlöv A, Gleisner KS. SPECT image segmentation for estimation of tumour volume and activity concentration in 177 Lu-DOTATATE radionuclide therapy. EJNMMI Res. 2017;7(18):1–17. PubMed PMC
He B, et al. Quantitative SPECT imaging with Lu-177: a physical phantom evaluation. J Nucl Med. 2012;53(supplement 1):2407.
International Atomic Energy Agency . IAEA human health reports no 9: quantitative nuclear medicine imaging: concepts, requirements and methods. Vienna: IAEA Human Health; 2014.
Landberg T, et al. International Commission on Radiation Units and Measurements report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50) Bethesda: International Commission on Radiation Units and Measurements; 1999.
Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol I. 2011;38:192–200. doi: 10.1007/s00259-010-1549-3. PubMed DOI
Lhommel R, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol. 2010;I(37):1654–1662. doi: 10.1007/s00259-010-1470-9. PubMed DOI
Ljungberg M, et al. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151–62. doi: 10.2967/jnumed.115.159012. PubMed DOI
Logan K. Quantitative SPECT imaging for diagnosis and dosimetry in radionuclide therapy. Int J Rad Appl Instrum B. 1987;14:205–209. doi: 10.1016/0883-2897(87)90043-2. PubMed DOI
Otsu N. A threshold selection method from gray-level histograms. IEEE T Syst Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Park M-A, et al. Adsorption of metallic radionuclides on plastic phantom walls. Med Phys. 2008;35(4):1606–10. doi: 10.1118/1.2871191. PubMed DOI PMC
Rizvi S, et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol. 2012;I(39):512–520. doi: 10.1007/s00259-011-2008-5. PubMed DOI PMC
Sgouros G, Hobbs R. Dosimetry for radiopharmaceutical therapy. Semin Nucl Med. 2014;44(3):172–178. doi: 10.1053/j.semnuclmed.2014.03.007. PubMed DOI PMC
Sgouros G, et al. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med. 2008;38:321–334. doi: 10.1053/j.semnuclmed.2008.05.008. PubMed DOI PMC
Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53(14):N277–N285. doi: 10.1088/0031-9155/53/14/N02. PubMed DOI
Stabin M, Xu X. Basic principles in the radiation dosimetry of nuclear medicine. Semin Nucl Med. 2014;44:162–171. doi: 10.1053/j.semnuclmed.2014.03.008. PubMed DOI
Stabin MG, et al. Radiation dosimetry in nuclear medicine. Appl Radiat Isot. 1999;50:73–87. doi: 10.1016/S0969-8043(98)00023-2. PubMed DOI
Strigari L, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol. 2014;I(41):1976–1988. doi: 10.1007/s00259-014-2824-5. PubMed DOI
Tran-Gia J, Schlögl S, Lassmann M. Design and fabrication of kidney phantoms for internal radiation dosimetry using 3D printing technology. J Nucl Med. 2016;57(12):1998–2005. doi: 10.2967/jnumed.116.178046. PubMed DOI
Tsui B, Hu H, Gillard D, Gullberg G. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci. 1988;35:778–783. doi: 10.1109/23.12831. DOI
Wessels B, Syh J, Meredith R. Overview of dosimetry for systemic targeted radionuclide therapy (STaRT) Int J Radiat Oncol Biol Phys. 2006;66:S39–S45. doi: 10.1016/j.ijrobp.2006.05.069. PubMed DOI
Walrand S, et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol I. 2011;38(SUPPL. 1):57–68. doi: 10.1007/s00259-011-1771-7. PubMed DOI
Yea JW, et al. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance of intensity-modulated radiotherapy. PLoS One. 2017;12(7):e0181560. doi: 10.1371/journal.pone.0181560. PubMed DOI PMC
Zanzonico P, Divgi C. Patient-specific radiation dosimetry for radionuclide therapy of liver tumors with intrahepatic artery Rhenium-188 Lipiodol. Semin Nucl Med. 2008;38:S30–S39. doi: 10.1053/j.semnuclmed.2007.10.005. PubMed DOI
Zanzonico P, Bigler R, Sgouros G, Strauss A. Quantitative SPECT in radiation dosimetry. Semin Nucl Med. 1989;19:47–61. doi: 10.1016/S0001-2998(89)80035-2. PubMed DOI
Zimmerman BE, et al. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification: an IAEA phantom study. Zeitschrift fur Medizinische Physik. 2015;27:98–112. doi: 10.1016/j.zemedi.2016.03.008. PubMed DOI PMC