• This record comes from PubMed

A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression

. 2018 ; 2018 () : 1868519. [epub] 20180718

Language English Country United States Media electronic-ecollection

Document type Journal Article, Review

The assessment of ECG signal quality after compression is an essential part of the compression process. Compression facilitates the signal archiving, speeds up signal transmission, and reduces the energy consumption. Conversely, lossy compression distorts the signals. Therefore, it is necessary to express the compression performance through both compression efficiency and signal quality. This paper provides an overview of objective algorithms for the assessment of both ECG signal quality after compression and compression efficiency. In this area, there is a lack of standardization, and there is no extensive review as such. 40 methods were tested in terms of their suitability for quality assessment. For this purpose, the whole CSE database was used. The tested signals were compressed using an algorithm based on SPIHT with varying efficiency. As a reference, compressed signals were manually assessed by two experts and classified into three quality groups. Owing to the experts' classification, we determined corresponding ranges of selected quality evaluation methods' values. The suitability of the methods for quality assessment was evaluated based on five criteria. For the assessment of ECG signal quality after compression, we recommend using a combination of these methods: PSim SDNN, QS, SNR1, MSE, PRDN1, MAX, STDERR, and WEDD SWT.

See more in PubMed

Blanco-Velasco M., Cruz-Roldan F., Godino-Llorente J. I., Blanco-Velasco J., Armiens-Aparicio C., Lopez-Ferreras F. On the use of PRD and CR parameters for ECG compression. Medical Engineering & Physics. 2005;27(9):798–802. PubMed

Dandapat S., Sharma L. N., Tripathy R. K. Quantification of diagnostic information from electrocardiogram signal: A review. Advances in Communication and Computing. 2015;347:17–39. doi: 10.1007/978-81-322-2464-8_2. DOI

Al-Fahoum A. S. Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Transactions on Information Technology in Biomedicine. 2006;10(1):182–191. doi: 10.1109/TITB.2005.855554. PubMed DOI

Manikandan M. S., Dandapat S. Effective quality-controlled SPIHT-based ECG coding strategy under noise environments. IEEE Electronics Letters. 2008;44(20):1182–1184. doi: 10.1049/el:20081319. DOI

Fira C. M., Goras L. An ECG signals compression method and its validation using NNs. IEEE Transactions on Biomedical Engineering. 2008;55(4):1319–1326. doi: 10.1109/TBME.2008.918465. PubMed DOI

Manikandan M. S., Dandapat S. Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review. Biomedical Signal Processing and Control. 2014;14:73–107. doi: 10.1016/j.bspc.2014.07.002. DOI

Hrubes J., Vitek M., Kozumplik J. Multipoint validation of decompressed ECG signal. Analysis of Biomedical Signals and Images. 2010:138–42.

Smisek R., Marsanova L., Nemcova A., Vitek M., Kozumplik J., Novakova M. CSE database: extended annotations and new recommendations for ECG software testing. Medical & Biological Engineering & Computing. 2017;55(8):1473–1482. PubMed

The CSE Working Party. Database: Common Standards for Quantitative Electrocardiography [CD-ROM] 1990.

Lu Z., Kim D. Y., Pearlman W. A. Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Transactions on Biomedical Engineering. 2000;47(7):849–856. doi: 10.1109/10.846678. PubMed DOI

Hrubes J., Vitek M., Kozumplik J. Possibilities of wavelet decomposition for SPIHT compression of ECG signals. Analysis of Biomedical Signals and Images. 2008:451–454.

Agulhari C. M., Bonatti I. S., Peres P. L. D. An adaptive run length encoding method for the compression of electrocardiograms. Medical Engineering & Physics. 2013;35(2):145–153. PubMed

Manikandan M. S., Dandapat S. Wavelet threshold based TDL and TDR algorithms for real-time ECG signal compression. Biomedical Signal Processing and Control. 2008;3(1):44–66. doi: 10.1016/j.bspc.2007.09.003. DOI

Chen J., Itoh S. A wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Transactions on Biomedical Engineering. 1998;45(12):1414–1419. doi: 10.1109/10.730435. PubMed DOI

Chou H.-H., Chen Y.-J., Shiau Y.-C., Kuo T.-S. An effective and efficient compression algorithm for ECG signals with irregular periods. IEEE Transactions on Biomedical Engineering. 2006;53(6):1198–1205. doi: 10.1109/TBME.2005.863961. PubMed DOI

Kumari R. S., Prabha R. S., Sadasivam V. ECG signal coding using biorthogonal wavelet-based Burrows-Wheeler coder. International Journal of Wavelets, Multiresolution and Information Processing. 2011;9(2):269–281. doi: 10.1142/S0219691311004079. DOI

Surekha K. S., Patil B. P. ECG signal compression using hybrid 1D and 2D wavelet transform. Proceedings of the 2014 Science and Information Conference (SAI); August 2014; London, UK. pp. 468–472. DOI

Abo-Zahhad M., Ahmed S. M., Zakaria A. An efficient technique for compressing ECG signals using QRS detection, estimation, and 2D DWT coefficients thresholding. Modelling and Simulation in Engineering. 2012;2012:10. doi: 10.1155/2012/742786. DOI

Lee S., Kim J., Lee M. A Real-time ECG Data compression and transmission algorithm for an e-health device. IEEE Transactions on Biomedical Engineering. 2011;58(9):2448–2455. PubMed

Ma J. L., Zhang T. T., Dong M. C. A Novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications. IEEE Journal of Biomedical and Health Informatics. 2015;19(3):986–94. PubMed

Provaznik I., Kozumplik J. Wavelet transform in electrocardiography - Data compression. International Journal of Medical Informatics. 1997;45(1-2):111–128. doi: 10.1016/S1386-5056(97)00040-3. PubMed DOI

Mamaghanian H., Khaled N., Atienza D., Vandergheynst P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Transactions on Biomedical Engineering. 2011;58(9):2456–2466. doi: 10.1109/tbme.2011.2156795. PubMed DOI

Salomon D. Data Compression: The Complete Reference. 4th. Springer; 2007.

Caralli-D'Ambrosio A., Ortiz-Conde A., Garcia-Sanchez F. J. Percentage Area Difference (PAD) as a measure of distortion and its use in Maximum Enclosed Area (MEA), a new ECG signal compression algorithm. Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems; 2002; Oranjestad, Aruba, Netherlands. p. p. 1035-1-5. DOI

Elgendi M., Al-Ali A., Mohamed A., Ward R. Improving remote health monitoring: a low-complexity ECG compression approach. Diagnostics (Basel) 2018;8(1, article no. 10):1–17. doi: 10.3390/diagnostics8010010. PubMed DOI PMC

Twomey N., Walsh N., Doyle O., et al. The effect of lossy ECG compression on QRS and HRV feature extraction. Proceedings of the 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010); August 2010; Buenos Aires, Argentina; pp. 634–637. PubMed DOI

Istepanian R. S. H., Petrosian A. A. Optimal zonal wavelet-based ECG data compression for a mobile telecardiology system. IEEE Transactions on Information Technology in Biomedicine. 2000;4(3):200–211. doi: 10.1109/4233.870030. PubMed DOI

Manikandan M. S., Dandapat S. Wavelet energy based diagnostic distortion measure for ECG. Biomedical Signal Processing and Control. 2007;2(2):80–96. doi: 10.1016/j.bspc.2007.05.001. DOI

Adamo A., Grossi G., Lanzarotti R., Lin J. ECG compression retaining the best natural basis k-coefficients via sparse decomposition. Biomedical Signal Processing and Control. 2015;15:11–17. doi: 10.1016/j.bspc.2014.09.002. DOI

Padhy S., Sharma L. N., Dandapat S. Multilead ECG data compression using SVD in multiresolution domain. Biomedical Signal Processing and Control. 2016;23:10–18. doi: 10.1016/j.bspc.2015.06.012. DOI

Manikandan M. S., Dandapat S. Multiscale entropy-based weighted distortion measure for ECG coding. IEEE Signal Processing Letters. 2008;15:829–832. doi: 10.1109/LSP.2008.2007620. DOI

Moody G. B., Mark R. G., Goldberger A. L. Evaluation of the 'TRIM' ECG data compressor. Proceedings of the Computers in Cardiology; 1988; Washington, DC, USA. IEEE; pp. 167–170. DOI

Jalaleddine S. M. S., Hutchens C. G., Strattan R. D., Coberly W. A. ECG data compression techniques—a unified approach. IEEE Transactions on Biomedical Engineering. 1990;37(4):329–343. doi: 10.1109/10.52340. PubMed DOI

Hilton M. L. Wavelet and wavelet packet compression of electrocardiograms. IEEE Transactions on Biomedical Engineering. 1997;44(5):394–402. doi: 10.1109/10.568915. PubMed DOI

Zigel Y., Cohen A., Katz A. The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Transactions on Biomedical Engineering. 2000;47(11):1422–1430. doi: 10.1109/tbme.2000.880093. PubMed DOI

Zigel Y., Cohen A., Katz A. ECG signal compression using analysis by synthesis coding. IEEE Transactions on Biomedical Engineering. 2000;47(10):1308–1316. doi: 10.1109/10.871403. PubMed DOI

Zigel Y., Cohen A. On the optimal distortion measure for ECG compression. Proceedings of the European Medical and Biological Engineering Conference; 1999; Vienna, Austria. pp. 1618–1619.

Hadjileontiadis L. J. M-Health: Emerging mobile health systems. Springer; 2006. Biosignals and compression standards; pp. 277–292.

Alesanco A., Garcia J. A simple method for guaranteeing ECG quality in real-time wavelet lossy coding. EURASIP Journal on Advances in Signal Processing. 2007;9(1) doi: 10.1155/2007/93195. DOI

Hernando-Ramiro C., Blanco-Velasco M., Lovisolo L., Cruz-Roldán F. Consistent quality control in ECG compression by means of direct metrics. Physiological Measurement. 2015;36(9, article no. 1981):1981–1994. doi: 10.1088/0967-3334/36/9/1981. PubMed DOI

Jha C. K., Kolekar M. H. ECG data compression algorithm for tele-monitoring of cardiac patients. International Journal of Telemedicine and Clinical Practices. 2017;2(1):31–41. doi: 10.1504/IJTMCP.2017.082106. DOI

Blanco-Velasco M., Cruz-Roldán F., Godino-Llorente J. I., Barner K. E. ECG compression with retrieved quality guaranteed. IEEE Electronics Letters. 2004;40(23):1466–1467. doi: 10.1049/el:20046382. DOI

Benzid R., Marir F., Bouguechal N.-E. Quality-controlled compression method using wavelet transform for electrocardiogram signals. International Journal of Medical, Health, Biomedical and Pharmaceutical Engineering. 2007;1(2):96–101.

Moody G. B., Mark R. G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine. 2001;20(3):45–50. doi: 10.1109/51.932724. PubMed DOI

Goldberger A. L., Amaral L. A., Glass L., et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–E220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Manikandan M. S., Dandapat S. An effective wavelet-based lossy compression of noisy ECG signals. Proceedings of the IEEE Region 10 Conference (TENCON 2008); 2008; Hyderabad, India. IEEE;

Manikandan M. S., Dandapat S. ECG signal compression using discrete sinc interpolation. Proceedings of the 3rd International Conference on Intelligent Sensing and Information Processing, ICISIP 2005; December 2005; India. pp. 14–19.

Prauzek M., Penhaker M. Methods of comparing ECG reconstruction. Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics; October 2009; Tianjin, China. IEEE; pp. 1–4. DOI

Olmos S., Laguna P. A clinical distortion index for ECG data compression performance evaluation. Proceedings of the Conference of the European Society for Engineering and Medicine; 1999.

Zigel Y., Cohen A., Katz A. A diagnostic meaningful distortion measure for ECG compression. Proceedings of the Nineteenth Convention of Electrical and Electronics Engineers in Israel; 1996; pp. 117–120. DOI

Zigel Y., Cohen A., Abu-Ful A., Wagshal A., Katz A. Analysis by synthesis ECG signal compression. Computers in Cardiology. 1997;24:279–282. doi: 10.1109/CIC.1997.647885. DOI

Craven D., McGinley B., Kilmartin L., Glavin M., Jones E. Impact of compressed sensing on clinically relevant metrics for ambulatory ECG monitoring. IEEE Electronics Letters. 2015;51(4):323–325. doi: 10.1049/el.2014.4188. DOI

Shorten G. P., Burke M. J. The application of dynamic time warping to measure the accuracy of ECG compression. International Journal of Circuits, Systems and Signal Processing. 2011;5(3):305–313.

Shorten G. P., Burke M. J. Recent Researches in Communication, Automation, Signal Processing, Nanotechnology, Astronomy & Nuclear Physics (WSEAS) Athens, Greece: 2011. A novel approach in testing the accuracy of ECG compression using partial percentage RMS difference and dynamic time warping.

Ahmed M. U., Mandic D. P. Multivariate multiscale entropy analysis. IEEE Signal Processing Letters. 2012;19(2):91–94. doi: 10.1109/lsp.2011.2180713. DOI

Satija U., Ramkumar B., Manikandan M. S. A review of signal processing techniques for electrocardiogram signal quality assessment. IEEE Reviews in Biomedical Engineering. 2018 doi: 10.1109/RBME.2018.2810957. PubMed DOI

Satija U., Ramkumar B., Manikandan M. S. An automated ECG signal quality assessment method for unsupervised diagnostic systems. Biocybernetics and Biomedical Engineering. 2018;38(1):54–70. doi: 10.1016/j.bbe.2017.10.002. DOI

Plesinger F., Jurco J., Halamek J., Jurak P. SignalPlant: an open signal processing software platform. Physiological Measurement. 2016;37(7):N38–N48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI

Vitek M., Hrubes J., Kozumplik J. A wavelet-based ECG delineation with improved P wave offset detection accuracy. Analysis of Biomedical Signals and Images. 2010:160–165.

Mahamat H. A., Jacquir S., Khalil C., Laurent G., Binczak S. Wolff-Parkinson-White (WPW) syndrome: The detection of delta wave in an electrocardiogram (ECG). Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016; August 2016; Orlando, Florida, USA. pp. 3809–3812. PubMed DOI

Maršánová L. Detection of P, QRS and T components of ECG using phasor transform. IEEE Student Branch Conference; 2016; Blansko, Czech Republic. pp. 55–58.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...