Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae)
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NE/L002485/1
Natural Environment Research Council - International
MU 1137/12-1
Deutsche Forschungsgemeinschaft - International
BB/M000583/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M00192X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011178/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30230555
PubMed Central
PMC6492137
DOI
10.1111/nph.15490
Knihovny.cz E-resources
- Keywords
- Aethionema arabicum, abscisic acid (ABA), bet-hedging, dimorphic diaspores, dispersal by wind and water, environmental adaptations, fruit biomechanics, pericarp-imposed properties,
- MeSH
- Biophysical Phenomena * MeSH
- Biomechanical Phenomena MeSH
- Brassicaceae physiology MeSH
- Ecosystem MeSH
- Adaptation, Physiological * MeSH
- Germination physiology MeSH
- Fruit physiology MeSH
- Soil MeSH
- Seeds physiology MeSH
- Seed Dispersal physiology MeSH
- Wind MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH
- Water MeSH
Heteromorphic diaspores (fruits and seeds) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments, particularly fluctuations in favourable temperatures and unpredictable precipitation regimes in arid climates. We conducted comparative analyses of the biophysical and ecophysiological properties of the two distinct diaspores (mucilaginous seed (M+ ) vs indehiscent (IND) fruit) in the dimorphic annual Aethionema arabicum (Brassicaceae), linking fruit biomechanics, dispersal aerodynamics, pericarp-imposed dormancy, diaspore abscisic acid (ABA) concentration, and phenotypic plasticity of dimorphic diaspore production to its natural habitat and climate. Two very contrasting dispersal mechanisms of the A. arabicum dimorphic diaspores were revealed. Dehiscence of large fruits leads to the release of M+ seed diaspores, which adhere to substrata via seed coat mucilage, thereby preventing dispersal (antitelechory). IND fruit diaspores (containing nonmucilaginous seeds) disperse by wind or water currents, promoting dispersal (telechory) over a longer range. The pericarp properties confer enhanced dispersal ability and degree of dormancy on the IND fruit morph to support telechory, while the M+ seed morph supports antitelechory. Combined with the phenotypic plasticity to produce more IND fruit diaspores in colder temperatures, this constitutes a bet-hedging survival strategy to magnify the prevalence in response to selection pressures acting over hilly terrain.
Department of Biology Botany University of Osnabrück Barbarastraße 11 D 49076 Osnabrück Germany
School of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK
See more in PubMed
Apaydin H, Anli AS, Ozturk F. 2011. Evaluation of topographical and geographical effects on some climatic parameters in the Central Anatolia Region of Turkey. International Journal of Climatology 31: 1264–1279.
Avino M, Kramer EM, Donohue K, Hammel AJ, Hall JC. 2012. Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo 3: 20. PubMed PMC
Babaç MT. 2004. Possibility of an information system on plants of South‐West Asia with particular reference to the Turkish plants data service (TÜBIVES). Turkish Journal of Botany 28: 119–127.
Baskin CC, Baskin JM. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA, USA: Elsevier.
Baskin JM, Lu JJ, Baskin CC, Tan DY. 2013. The necessity for testing germination of fresh seeds in studies on diaspore heteromorphism as a life‐history strategy. Seed Science Research 23: 83–88.
Baskin JM, Lu JJ, Baskin CC, Tan DY, Wang L. 2014. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Perspectives in Plant Ecology, Evolution and Systematics 16: 93–99.
Benech‐Arnold RL, Giallorenzi MC, Frank J, Rodriguez V. 1999. Termination of hull‐imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity. Seed Science Research 9: 39–47.
Box GE, Cox DR. 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological) 26: 211–252.
Buoro M, Carlson SM. 2014. Life‐history syndromes: integrating dispersal through space and time. Ecology Letters 17: 756–767. PubMed
de Casas RR, Donohue K, Venable DL, Cheptou P‐O. 2015. Gene‐flow through space and time: dispersal, dormancy and adaptation to changing environments. Evolutionary Ecology 29: 813–831.
Chen S‐Y, Kuo S‐R, Chien C‐T. 2008. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiology 28: 1431–1439. PubMed
Cordazzo CV. 2006. Seed characteristics and dispersal of dimorphic fruit segments of Cakile maritima Scopoli (Brassicaceae) population of southern Brazilian coastal dunes. Brazilian Journal of Botany 29: 259–265.
Davis PH. 1965. Flora of Turkey and the East Aegean Islands. Edinburgh, UK: Edinburgh University Press.
Delcheva MH, Bancheva ST. 2017. Aethionema arabicum Andrz. ex DC. (Cruciferae) in Bulgaria – in situ and ex situ conservation. Annual of Sofia University “St. Kliment Ohridski” 101 : 80–88.
Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010. Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics 41: 293–319.
Dubois J, Cheptou P‐O. 2012. Competition/colonization syndrome mediated by early germination in non‐dispersing achenes in the heteromorphic species Crepis sancta . Annals of Botany 110: 1245–1251. PubMed PMC
Fahn A, Werker E. 1972. Anatomical mechanisms of seed dispersal In: Kozlowski TT, ed. Seed biology: importance, development, and germination. New York, NY, USA: Academic Press, 151–221.
Finch‐Savage WE, Leubner‐Metzger G. 2006. Seed dormancy and the control of germination. New Phytologist 171: 501–523. PubMed
Franzke A, Lysak MA, Al‐Shehbaz IA, Koch MA, Mummenhoff K. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends in Plant Science 16: 108–116. PubMed
García‐Fayos P, Bochet E, Cerdà A. 2010. Seed removal susceptibility through soil erosion shapes vegetation composition. Plant and Soil 334: 289–297.
Grubert M. 1974. Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance. Acta Biologica Venezuelica 8: 315–551.
Gutterman Y. 1993. Seed germination in desert plants In: Cloudsley‐Thompson JL, ed. Adaptations of desert organisms. Heidelberg, Germany: Springer, 1–253
Gutterman Y. 2002. Survival strategies of annual desert plants. Berlin, Germany: Springer‐Verlag.
Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly‐Lopez Z, Steffen JG, Hazzouri KM et al 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics 45: 891–898. PubMed
Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Macháčková I, Fischer U, Leubner‐Metzger G. 2007. 1‐Aminocyclopropane‐1‐carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. Journal of Experimental Botany 58: 3047–3060. PubMed
Imbert E. 2002. Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics 5: 13–36.
Jansen VAA, Yoshimura J. 1998. Populations can persist in an environment consisting of sink habitats only. Proceedings of the National Academy of Sciences, USA 95: 3696–3698. PubMed PMC
Jiménez‐Moreno G, Alçiçek H, Alçiçek MC, van den Hoek Ostende L, Wesselingh FP. 2015. Vegetation and climate changes during the late Pliocene and early Pleistocene in SW Anatolia, Turkey. Quaternary Research 84: 448–456.
Kesseler R, Stuppy W. 2012. Seeds: time capsules of life. San Rafael, CA, USA: Earth Aware Editions.
Larson‐Johnson K. 2016. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytologist 209: 418–435. PubMed
Lenser T, Graeber K, Cevik ÖS, Adigüzel N, Dönmez AA, Grosche C, Kettermann M, Mayland‐Quellhorst S, Mérai Z, Mohammadin S et al 2016. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum . Plant Physiology 172: 1691–1707. PubMed PMC
Lenser T, Tarkowská D, Novák O, Wilhelmsson PK, Bennett T, Rensing SA, Strnad M, Theißen G. 2018. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema . Plant Journal 94: 352–371. PubMed
Linkies A, Graeber K, Knight C, Leubner‐Metzger G. 2010. The evolution of seeds. New Phytologist 186: 817–831. PubMed
Lu JJ, Tan DY, Baskin JM, Baskin CC. 2010. Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance. Annals of Botany 105: 999–1014. PubMed PMC
Lu JJ, Tan DY, Baskin JM, Baskin CC. 2013. Trade‐offs between seed dispersal and dormancy in an amphi‐basicarpic cold desert annual. Annals of Botany 112: 1815–1827. PubMed PMC
Lu JJ, Tan DY, Baskin JM, Baskin CC. 2015. Post‐release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspectives in Plant Ecology, Evolution and Systematics 17: 255–262.
Mandák B, Pyšek P. 2001. Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy. Journal of Ecology 89: 159–165.
Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Dönmez AA, Mummenhoff K, Pires JC, Edger PP, Al‐Shehbaz IA, Schranz ME. 2017. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. American Journal of Botany 104: 1042–1054. PubMed
Mohammadin S, Wang W, Liu T, Moazzeni H, Ertugrul K, Uysal T, Christodoulou CS, Edger PP, Pires JC, Wright SI et al 2018. Genome‐wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae). Plant Systematics and Evolution 304: 1–12.
Mondoni A, Rossi G, Orsenigo S, Probert RJ. 2012. Climate warming could shift the timing of seed germination in alpine plants. Annals of Botany 110: 155–164. PubMed PMC
Mühlhausen A, Lenser T, Mummenhoff K, Theißen G. 2013. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant Journal 73: 824–835. PubMed
Mühlhausen A, Polster A, Theissen G, Mummenhoff K. 2010. Evolution of fruit dehiscence in Brassicaceae: examples from Aethionema and Lepidium . Acta Horticulturae 867: 207–219.
Mummenhoff K, Franzke A. 2007. Gone with the bird: Late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants. Systematics and Biodiversity 5: 255–260.
Ohsawa T, Tsuda Y, Saito Y, Sawada H, Lde Y. 2007. Steep slopes promote downhill dispersal of Quercus crispula seeds and weaken the fine‐scale genetic structure of seedling populations. Annals of Forest Science 64: 405–412.
van der Pijl L. 1982. Principles of dispersal in higher plants. Berlin/Heidelberg, Germany: Springer‐Verlag.
Pufal G, Ryan KG, Garnock‐Jones P. 2010. Hygrochastic capsule dehiscence in New Zealand alpine Veronica (Plantaginaceae). American Journal of Botany 97: 1413–1423. PubMed
Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. 2017. Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science 8: Article 95. PubMed PMC
Ridley H. 1930. The dispersal of plants throughout the world. Ashford, UK: Reeve.
Robledo‐Arnuncio JJ, Klein EK, Muller‐Landau HC, Santamaría L. 2014. Space, time and complexity in plant dispersal ecology. Movement Ecology 2: 16. PubMed PMC
Şekercioğlu ÇH, Anderson S, Akçay E, Bilgin R, Can ÖE, Semiz G, Tavşanoğlu Ç, Yokeş MB, Soyumert A, İpekdal K et al 2011. Turkey's globally important biodiversity in crisis. Biological Conservation 144: 2752–2769.
Slatkin M. 1974. Hedging one's evolutionary bets. Nature 250: 704–705.
Sorensen AE. 1978. Somatic polymorphism and seed dispersal. Nature 276: 174–176.
Sperber K, Steinbrecher T, Graeber K, Scherer G, Clausing S, Wiegand N, Hourston JE, Kurre R, Leubner‐Metzger G, Mummenhoff K. 2017. Fruit fracture biomechanics and the release of Lepidium didymum pericarp‐imposed mechanical dormancy by fungi. Nature Communications 8: 1868. PubMed PMC
Steinbrecher T, Leubner‐Metzger G. 2017. The biomechanics of seed germination. Journal of Experimental Botany 68: 765–783. PubMed
Sun Y, Tan DY, Baskin CC, Baskin JM. 2012. Role of mucilage in seed dispersal and germination of the annual ephemeral Alyssum minus (Brassicaceae). Australian Journal of Botany 60: 439–449.
Sunar S, Yildirim N, Sengul M, Agar G. 2016. Genetic diversity and relationships detected by ISSR and RAPD analysis among Aethionema species growing in Eastern Anatolia (Turkey). Comptes Rendus Biologies 339: 147–151. PubMed
Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, USA 102: 8245–8250. PubMed PMC
Trakhtenbrot A, Katul G, Nathan R. 2014. Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecological Modelling 274: 29–40.
Truscott AM, Soulsby C, Palmer SCF, Newell L, Hulme PE. 2006. The dispersal characteristics of the invasive plant Mimulus guttatus and the ecological significance of increased occurrence of high‐flow events. Journal of Ecology 94: 1080–1091.
Venable DL. 1985. The evolutionary ecology of seed heteromorphism. American Naturalist 126: 577–595.
Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York, NY, USA: Springer.
Vitalis R, Rousset F, Kobayashi Y, Olivieri I, Gandon S. 2013. The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin competition. Evolution 67: 1676–1691. PubMed
Volis S, Bohrer G. 2013. Joint evolution of seed traits along an aridity gradient: seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. New Phytologist 197: 655–667. PubMed
Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17: 2145–2161.
Willis C, Hall J, Rubio de Casas R, Wang T, Donohue K. 2014. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). Annals of Botany 114: 1675–1686. PubMed PMC
Yang X, Baskin JM, Baskin CC, Huang Z. 2012. More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Evolution and Systematics 14: 434–442.
Zohary M. 1937. Die verbreitungsökologischen Verhältnisse der Pflanzen Palästinas. Beihefte zum Botanischen Centralblat 56: 1–155.
Complementing model species with model clades
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings