Long-term follow-up in PMM2-CDG: are we ready to start treatment trials?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30293989
DOI
10.1038/s41436-018-0301-4
PII: S1098-3600(21)01477-5
Knihovny.cz E-zdroje
- Klíčová slova
- CDG severity scale, PMM2-CDG, coagulation, liver function test, long-term follow-up,
- MeSH
- dítě MeSH
- fenotyp MeSH
- fosfotransferasy (fosfomutasy) nedostatek MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- následné studie MeSH
- předškolní dítě MeSH
- progrese nemoci MeSH
- vrozené poruchy glykosylace epidemiologie patofyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfotransferasy (fosfomutasy) MeSH
PURPOSE: PMM2-CDG is the most common congenital disorder of glycosylation (CDG), which presents with either a neurologic or multisystem phenotype. Little is known about the longitudinal evolution. METHODS: We performed data analysis on PMM2-CDG patients' clinical features according to the Nijmegen CDG severity score and laboratory data. Seventy-five patients (28 males) were followed up from 11.0 ± 6.91 years for an average of 7.4 ± 4.5 years. RESULTS: On a group level, there was no significant evolution in overall clinical severity. There was some improvement in mobility and communication, liver and endocrine function, and strabismus and eye movements. Educational achievement and thyroid function worsened in some patients. Overall, the current clinical function, the system-specific involvement, and the current clinical assessment remained unchanged. On follow-up there was improvement of biochemical variables with (near) normalization of activated partial thromboplastin time (aPTT), factor XI, protein C, antithrombin, thyroid stimulating hormone, and liver transaminases. CONCLUSION: PMM2-CDG patients show a spontaneous biochemical improvement and stable clinical course based on the Nijmegen CDG severity score. This information is crucial for the definition of endpoints in clinical trials.
AP HP Hôpital Necker Service d'Hématologie Biologique Paris France
Biochemistry Department AP HP Bichat Hospital Paris France
Biochemistry Department Paris Descartes University Bichat Hospital Paris France
Center for Human Genetics KU Leuven Leuven Belgium
Department of Clinical Genomics Mayo Clinic Rochester MN USA
Department of Development and Regeneration Faculty of Medicine KU Leuven Leuven Belgium
Department of General Internal Medicine Faculty of Medicine KU Leuven Leuven Belgium
Department of Medical Genetics King Faisal Specialist and Research Hospital Riyadh Saudi Arabia
Department of Pediatrics University Hospitals Leuven Leuven Belgium
Gastroenterology Hepatology and Metabolic Center University Hospitals Leuven Leuven Belgium
Medical Genetic Department Montréal Children Hospital McGill University Montreal Canada
Metabolic Center University Hospitals Leuven Leuven Belgium
Pediatrics and Metabolic Center University Hospitals Leuven Leuven Belgium
UMR INSERM 1193 Faculty of Pharmacy Paris Sud University Paris France
UMR_S1176 INSERM Univ Paris Sud Université Paris Saclay Le Kremlin Bicêtre France
Zobrazit více v PubMed
Jaeken J, Peanne R. What is new in CDG? J Inherit Metab Dis. 2017;40:569–586. DOI
Schiff M, Roda C, Monin ML, et al. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. J Med Genet. 2017;54:843–851.
Funke S, Gardeitchik T, Kouwenberg D, et al. Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A. 2013;161A:578–584. DOI
Kjaergaard S, Kristiansson B, Stibler H, et al. Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A. Acta Paediatr. 1998;87:884–888. DOI
Mayatepek E, Kohlmuller D. Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency. Eur J Pediatr. 1998;157:605–606. DOI
Panneerselvam K, Freeze HH. Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts. J Clin Invest. 1996;97:1478–1487. DOI
Brasil S, Pascoal C, Francisco R, et al. CDG Therapies: from bench to bedside. Int J Mol Sci. 2018;19.
Achouitar S, Mohamed M, Gardeitchik T, et al. Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression. J Inherit Metab Dis. 2011;34:923–927. DOI
Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis. 2017;40:195–207. DOI
Kjaergaard S, Schwartz M, Skovby F. Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child. 2001;85:236–239. DOI
Grunewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients’ fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet. 2001;68:347–354. DOI
Arnoux JB, Boddaert N, Valayannopoulos V, et al. Risk assessment of acute vascular events in congenital disorder of glycosylation type Ia. Mol Genet Metab. 2008;93:444–449. DOI
Monin ML, Mignot C, De Lonlay P, et al. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis. 2014;9:207. DOI
Al Teneiji A, Bruun TU, Sidky S, et al. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab. 2017;120:235–242. DOI
de Lonlay P, Seta N, Barrot S, et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet. 2001;38:14–19. DOI
Barone R, Sturiale L, Sofia V, et al. Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG-Ia. Am J Med Genet A. 2008;146A:2103–2108. DOI
Enns GM, Steiner RD, Buist N, et al. Clinical and molecular features of congenital disorder of glycosylation in patients with type 1 sialotransferrin pattern and diverse ethnic origins. J Pediatr. 2002;141:695–700. DOI
Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr. 2004;38:282–287. DOI
Perez-Duenas B, Garcia-Cazorla A, Pineda M, et al. Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Paediatr Neurol. 2009;13:444–451. DOI
Grunewald S, De Vos R, Jaeken J. Abnormal lysosomal inclusions in liver hepatocytes but not in fibroblasts in congenital disorders of glycosylation (CDG). J Inherit Metab Dis. 2003;26:49–54. DOI
Vuillaumier-Barrot S, Isidor B, Dupre T, Le Bizec C, David A, Seta N. Expanding the spectrum of PMM2-CDG phenotype. JIMD Rep. 2012;5:123–125. PubMed