Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
VEKOP-2.3.3-15-2016-00008
Government of Hungary
PD-112047
National Research, Development and Innovation Office, Hungary
PD-111979
National Research, Development and Innovation Office, Hungary
K-124159
National Research, Development and Innovation Office, Hungary
AGL2016-75226-R
Spanish Ministry of Economy and Competitiveness
LO1305
Ministry of Education, Youth and Sports of the Czech Republic
BO/00207/15/4
Magyar Tudományos Akadémia
PubMed
30382344
DOI
10.1007/s00425-018-3037-0
PII: 10.1007/s00425-018-3037-0
Knihovny.cz E-resources
- Keywords
- Bathophenanthroline disulfonate, Ferric chelate reductase, Gene expression, Mössbauer spectroscopy, Oilseed rape,
- MeSH
- Brassica napus metabolism MeSH
- Chloroplasts metabolism MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Azetidinecarboxylic Acid analogs & derivatives metabolism MeSH
- Spectroscopy, Mossbauer MeSH
- Transcriptome MeSH
- Ferric Compounds metabolism MeSH
- Iron metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ferric citrate MeSH Browser
- Azetidinecarboxylic Acid MeSH
- nicotianamine MeSH Browser
- Ferric Compounds MeSH
- Iron MeSH
Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.
See more in PubMed
Plant Physiol. 1999 Mar;119(3):1107-14 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Planta. 2001 Oct;213(6):967-76 PubMed
Plant Physiol. 2002 Mar;128(3):1022-30 PubMed
Plant Physiol. 2002 Aug;129(4):1435-8 PubMed
Plant Physiol. 1995 May;108(1):269-275 PubMed
FEBS Lett. 2003 Jan 30;535(1-3):159-65 PubMed
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4777-82 PubMed
Plant Physiol. 1982 Jan;69(1):107-11 PubMed
Plant Cell. 2007 Mar;19(3):986-1006 PubMed
Curr Opin Plant Biol. 2007 Jun;10(3):276-82 PubMed
Biometals. 2008 Oct;21(5):503-13 PubMed
Rapid Commun Mass Spectrom. 2008 May;22(10):1553-62 PubMed
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10619-24 PubMed
Ann Bot. 2009 Jan;103(1):1-11 PubMed
Trends Plant Sci. 2009 May;14(5):280-5 PubMed
Ann Bot. 2010 May;105(5):811-22 PubMed
Plant Physiol. 2009 Oct;151(2):559-73 PubMed
Plant Cell Physiol. 2010 Jan;51(1):91-102 PubMed
Plant Signal Behav. 2010 Jan;5(1):49-52 PubMed
Plant Physiol. 2011 Apr;155(4):1709-22 PubMed
Plant Physiol Biochem. 2011 May;49(5):471-82 PubMed
Plant Physiol Biochem. 2012 Mar;52:91-7 PubMed
Plant Cell. 2012 Jun;24(6):2380-400 PubMed
Antioxid Redox Signal. 2013 Sep 20;19(9):919-32 PubMed
Plant Cell. 2013 Mar;25(3):1040-55 PubMed
Annu Rev Plant Biol. 2014;65:125-53 PubMed
New Phytol. 2014 May;202(3):920-8 PubMed
Front Plant Sci. 2014 Mar 21;5:100 PubMed
Front Plant Sci. 2014 Mar 25;5:105 PubMed
Trends Plant Sci. 2015 Jan;20(1):33-40 PubMed
Physiol Plant. 2015 May;154(1):82-94 PubMed
Planta. 2016 Jul;244(1):167-79 PubMed
Front Plant Sci. 2016 Feb 19;7:178 PubMed
New Phytol. 2016 Aug;211(3):1129-41 PubMed
Plant Biotechnol J. 2016 Dec;14(12):2228-2239 PubMed
Planta. 2016 Dec;244(6):1303-1313 PubMed
Front Plant Sci. 2016 Aug 05;7:1192 PubMed
Plant J. 2017 Mar;89(6):1184-1194 PubMed
Plant Physiol. 2018 Jan;176(1):596-610 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed