Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article
PubMed
30693173
PubMed Central
PMC6345220
DOI
10.1002/open.201800267
PII: OPEN201800267
Knihovny.cz E-resources
- Keywords
- air filtration, lamination, nanofiber, polyacrylonitrile, water filtration,
- Publication type
- Journal Article MeSH
Novel electrospun polyacrylonitrile (PAN) nanofibrous membranes were prepared by using heat-press lamination under various conditions. The air permeability and the burst-pressure tests were run to select the membranes for point-of-use air and water cleaning. Membrane characterization was performed by using scanning electron microscopy, contact angle, and average pore size measurements. Selected membranes were used for both air dust filtration and cross-flow water filtration tests. Air dust filter results indicated that electrospun PAN nanofibrous membranes showed very high air-dust filtration efficiency of more than 99.99 % in between PM0.3 and PM2.5, whereas cross-flow filtration test showed very high water permeability over 600 L/(m2hbar) after 6 h of operation. Combining their excellent efficiency and water permeability, these membranes offer an ideal solution to filter both air and water pollutants.
See more in PubMed
Worthington M. J. H., Kucera R. L., Albuquerque I. S., Gibson C. T., Sibley A., Slattery A. D., Campbell J. A., Alboaiji S. F. K., Muller K. A., Young J., Chem. Eur. J. 2017, 23, 16219–16230. PubMed PMC
Nomura A., Jones C. W., Chem. Eur. J. 2014, 20, 6381–6390. PubMed
Zhang R., Yu Z., Wang L., Shen Q., Hou X., Guo X., Wang J., Zhu X., Yao Y., Chem. Eur. J. 2017, 23, 13696–13703. PubMed
Ho A. F. W., Wah W., Earnest A., Ng Y. Y., Xie Z., Shahidah N., Yap S., Pek P. P., Liu N., Lam S. S. W., Int. J. Cardiol. 2018, 271, 352–358. PubMed
W. H. Organization, “Ambient (outdoor) air quality and health,” can be found under http://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, n.d.
Brook R. D., Rajagopalan S., Pope C. A., Brook J. R., Bhatnagar A., Diez-Roux A. V., Holguin F., Hong Y., Luepker R. V., Mittleman M. A., Circulation 2010, 121, 2331–2378. PubMed
Pope C. A., Burnett R. T., Thurston G. D., Thun M. J., Calle E. E., Krewski D., Godleski J. J., Circulation 2004, 109, 71–77. PubMed
Markevych I., Tesch F., Datzmann T., Romanos M., Schmitt J., Heinrich J., Sci. Total Environ. 2018, 642, 1362–1368. PubMed
Kadam V. V, Wang L., Padhye R., J. Ind. Text. 2018, 47, 2253–2280.
Mahdi M., Shirazi A., Kargari A., Ramakrishna S., Doyle J., Rajendrian M., Babu P. Ramesh, J. Membr. Sci. Res. 2017, 3, 209–227.
D. Groitzsch, E. Fahrbach, Microporous Multilayer Nonwoven Material for Medical Applications, 1985, US4618524A.
Yalcinkaya F., Arab. J. Chem. 2016, DOI 10.1016/j.arabjc.2016.12.012.
Charles L. F., Shaw M. T., Olson J. R., Wei M., J. Mater. Sci. Mater. Med. 2010, 21, 1845–1854. PubMed
Jahanbaani A. R., Behzad T., Borhani S., Darvanjooghi M. H. K., Fibers Polym. 2016, 17, 1438–1448.
Charles L. E., Kramer E. R., Shaw M. T., Olson J. R., Wei M., J. Mech. Behav. Biomed. Mater. 2012, 17, 269–277. PubMed
Liu R., Ma L., Mei J., Huang S., Yang S., Li E., Yuan G., Chem. Eur. J. 2017, 23, 2610–2618. PubMed
Wirth E., Sabantina L., Weber M., Finsterbusch K., Ehrmann A., Nanomaterials 2018, 8, 746. PubMed PMC
F. Yalcinkaya, M. Komarek, D. Lubasova, F. Sanetrnik, J. Maryska, Nanocon 2014, 6th Int. Conf 2015.
Malašauskienė J., Milašius R., J. Nanomater. 2013, 2013, 1–6.
Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J., J. Nanomater. 2016, 2016, 1–7.
Liu C. K., He H. J., Sun R. J., Feng Y., Wang Q. shi, Mater. Des. 2016, 112, 456–461.
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P., Sci. Adv. Mater. 2016, 9, 747–757.
Kanafchian M., Valizadeh M., Haghi A. K., Korean J. Chem. Eng. 2011, 28, 445–448.
Yalcinkaya B., Yalcinkaya F., Chaloupek J., J. Nanomater. 2016, 2016, 1–12.
Yoon B., Lee S., Fibers Polym. 2011, 12, 57–64.
Yalcinkaya F., Hruza J., Nanomaterials 2018, 8, 272. PubMed PMC
Liu W., Wang S., Xiao M., Han D., Meng Y., Chem. Commun. 2012, 48, 3415–3417. PubMed
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P., Maryska J., in NANOCON 2016 - Conf. Proceedings, 8th Int. Conf. Nanomater. - Res. Appl., TANGER, Brno, 2016.
Valipour P., Babaahmadi V., Nasouri K., Adv. Polym. Technol. 2014, 33, DOI 10.1002/adv.21440.
Roche R., Yalcinkaya F., Nanomaterials 2018, 8, 771. PubMed PMC
Jiříček T., Komárek M., Chaloupek J., Lederer T., Desalin. Water Treat. 2017, 73, 249–255.
T. Jiříček, M. Komárek, J. Chaloupek, T. Lederer, Komá, M. Rek, J. Chaloupek, T. Lederer, J. Nanomater 2016, 2016, 1–7.
Yalcinkaya B., Yalcinkaya F., Chaloupek J., Desalin. Water Treat. 2017, 59, 19–30.
Mei Y., Yao C., Fan K., Li X., J. Membr. Sci. 2012, 417–418, 20–27.
Yalcinkaya F., Siekierka A., Bryjak M., Polymers (Basel). 2017, 9, 679. PubMed PMC
Ali A. A., Rutledge G. C., J. Mater. Process. Technol. 2009, 209, 4617–4620.
Sabantina L., Rodríguez-Cano M. Á., Klöcker M., García-Mateos F. J., Ternero-Hidalgo J. J., Mamun Al, Beermann F., Schwakenberg M., Voigt A. L., Rodríguez-Mirasol J., Polymers (Basel). 2018, 10, 735. PubMed PMC
Ma Z., Kotaki M., Ramakrishna S., J. Membr. Sci. 2005, 265, 115–123.
Zhang L., Liu L.-G., Pan F.-L., Wang D.-F., Pan Z.-J., J. Eng. Fibers Fabr. 2012, 7, 7–16.
Yalcinkaya F., J. Appl. Polym. Sci. 2018, 135, 46751.
Yalcinkaya F., Siekierka A., Bryjak M., RSC Adv. 2017, 7, 56704–56712.
Abuzade R. A., Zadhoush A., Gharehaghaji A. A., J. Appl. Polym. Sci. 2012, 126, 232–243.
Eichhorn S. J., Sampson W. W., J. R. Soc. Interface 2010, 7, 641–649. PubMed PMC
Krifa M., Yuan W., Text. Res. J. 2016, 86, 1294–1306.
Li D., Frey M. W., Joo Y. L., J. Membr. Sci. 2006, 286, 104–114.
Podgórski A., Bałazy A., Gradoń L., Chem. Eng. Sci. 2006, 61, 6804–6815.
Sundarrajan S., Tan K. Luck, Lim S. Huat, Ramakrishna S., Procedia Eng. 2014, 75, 159–163.
Zhao X., Wang S., Yin X., Yu J., Ding B., Sci. Rep. 2016, 6, 35472. PubMed PMC
Jiang Z., Zhang H., Zhu M., Lv D., Yao J., Xiong R., Huang C., J. Appl. Polym. Sci. 2018, 135, 45766.
Aimar P., Meireles M., Bacchin P., Sanchez V., in Membr. Process. Sep. Purif., Springer Netherlands, Dordrecht, 1994, pp. 27–57.
Rezaei H., Ashtiani F. Z., Fouladitajar A., Braz. J. Chem. Eng. 2014, 31, 503–518.
Sadrjahani M., Ravandi S. A. Hosseini, Fibers Polym. 2013, 14, 1276–1282.
Masson J. C., Acrylic Fiber Technology and Applications, M. Dekker, 1995.
Gupta A. K., Maiti A. K., J. Appl. Polym. Sci. 1982, 27, 2409–2416.
Lin Y., Zhong W., Shen L., Xu P., Du Q., J. Macromol. Sci. Phys. 2005, 44 B, 161–175.
Negoro T., Thodsaratpreeyakul W., Takada Y., Thumsorn S., Inoya H., Hamada H., in Energy Procedia, Elsevier, 2016, pp. 323–327.
Auckland D. W., Cooper R., in Conf. Electr. Insul. Dielectr. Phenom. - Annu. Rep. 1974, IEEE, 1974, pp. 71–79.
Scharnagl N., Buschatz H., Desalination 2001, 139, 191–198.
Xu Y., Wei Q., Functional Nanofibers and Their Applications, Woodhead Publishing, 2012.
Hwang K. J., Lin T. T., J. Membr. Sci. 2002, 199, 41–52.
Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology