Comprehensive characterization of ureagenesis in the spfash mouse, a model of human ornithine transcarbamylase deficiency, reveals age-dependency of ammonia detoxification

. 2019 Nov ; 42 (6) : 1064-1076. [epub] 20190313

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30714172

The most common ureagenesis defect is X-linked ornithine transcarbamylase (OTC) deficiency which is a main target for novel therapeutic interventions. The spf ash mouse model carries a variant (c.386G>A, p.Arg129His) that is also found in patients. Male spf ash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type), resulting in elevated urinary orotic acid but no hyperammonemia. We recently established a dried blood spot method for in vivo quantification of ureagenesis by Gas chromatography-mass spectrometry (GC-MS) using stable isotopes. Here, we applied this assay to wild-type and spf ash mice to assess ureagenesis at different ages. Unexpectedly, we found an age-dependency with a higher capacity for ammonia detoxification in young mice after weaning. A parallel pattern was observed for carbamoylphosphate synthetase 1 and OTC enzyme expression and activities, which may act as pacemaker of this ammonia detoxification pathway. Moreover, high ureagenesis in younger mice was accompanied by elevated periportal expression of hepatic glutamine synthetase, another main enzyme required for ammonia detoxification. These observations led us to perform a more extensive analysis of the spf ash mouse in comparison to the wild-type, including characterization of the corresponding metabolites, enzyme activities in the liver and plasma and the gut microbiota. In conclusion, the comprehensive enzymatic and metabolic analysis of ureagenesis performed in the presented depth was only possible in animals. Our findings suggest such analyses being essential when using the mouse as a model and revealed age-dependent activity of ammonia detoxification.

Zobrazit více v PubMed

Summar ML, Koelker S, Freedenberg D, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110:179-180. https://doi.org/10.1016/j.ymgme.2013.07.008.

Tuchman M. The clinical, biochemical, and molecular spectrum of ornithine transcarbamylase deficiency. J Lab Clin Med. 1992;120:836-850.

Yorifuji T, Muroi J, Uematsu A, et al. X-inactivation pattern in the liver of a manifesting female with ornithine transcarbamylase (OTC) deficiency. Clin Genet. 1998;54:349-353.

Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews(R), vol Last Update: June 22, 2017. Seattle, WA: University of Washington; 1993.

Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

Durand F. How to improve long-term outcome after liver transplantation? Liver Int. 2018;38(suppl 1):134-138. https://doi.org/10.1111/liv.13651.

Wang L, Bell P, Morizono H, et al. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol Genet Metab. 2017;120:299-305. https://doi.org/10.1016/j.ymgme.2017.02.011.

DeMars R, LeVan SL, Trend BL, Russell LB. Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proc Natl Acad Sci USA. 1976;73:1693-1697.

Doolittle DP, Hulbert LL, Cordy C. A new allele of the sparse fur gene in the mouse. J Hered. 1974;65:194-195.

Batshaw ML, Yudkoff M, McLaughlin BA, et al. The sparse fur mouse as a model for gene therapy in ornithine carbamoyltransferase deficiency. Gene Ther. 1995;2:743-749.

Tarasenko TN, Rosas OR, Singh LN, Kristaponis K, Vernon H, McGuire PJ. A new mouse model of mild ornithine transcarbamylase deficiency (spf-j) displays cerebral amino acid perturbations at baseline and upon systemic immune activation. PLoS One. 2015;10:e0116594. https://doi.org/10.1371/journal.pone.0116594.

Galloway PJ, MacPhee GB, Galea P, Robinson PH. Severe hyperammonaemia in a previously healthy teenager. Ann Clin Biochem. 2000;37 (pt 5:727-728. https://doi.org/10.1258/0004563001899807.

Rivera-Barahona A, Sanchez-Alcudia R, Viecelli HM, et al. Functional characterization of the spf/ash splicing variation in OTC deficiency of mice and man. PLoS One. 2015;10:e0122966. https://doi.org/10.1371/journal.pone.0122966.

Monastiri K, Rabier D, Kamoun P. Prenatal diagnosis of ornithine transcarbamylase deficiency: results in Spfash mice. Prenat Diagn. 1993;13:441-447.

Gushiken T, Yoshimura N, Saheki T. Transient hyperammonemia during aging in ornithine transcarbamylase-deficient, sparse-fur mice. Biochem Int. 1985;11:637-643.

Shiojiri N, Inujima S, Ishikawa K, Terada K, Mori M. Cell lineage analysis during liver development using the spf(ash)-heterozygous mouse. Lab Investig. 2001;81:17-25.

McGuire PJ, Tarasenko TN, Wang T, et al. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency. Dis Model Mech. 2014;7:205-213. https://doi.org/10.1242/dmm.013003.

Michel JL, Rabier D, Rambaud C, et al. Intrasplenic transplantation of hepatocytes in spf-ash mice with congenital ornithine transcarbamylase deficiency. Chirurgie. 1993;119:666-671.

Cunningham SC, Kok CY, Dane AP, et al. Induction and prevention of severe hyperammonemia in the spfash mouse model of ornithine transcarbamylase deficiency using shRNA and rAAV-mediated gene delivery. Mol Ther. 2011;19:854-859. https://doi.org/10.1038/mt.2011.32.

Cunningham SC, Spinoulas A, Carpenter KH, Wilcken B, Kuchel PW, Alexander IE. AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spf(ash) mice. Mol Ther. 2009;17:1340-1346. https://doi.org/10.1038/mt.2009.88.

Shimada T, Noda T, Tashiro M, et al. Correction of ornithine transcarbamylase (OTC) deficiency in spf-ash mice by introduction of rat OTC gene. FEBS Lett. 1991;279:198-200.

Wang L, Morizono H, Lin J, et al. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome. Mol Genet Metab. 2012;105:203-211. https://doi.org/10.1016/j.ymgme.2011.10.020.

Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334-338. https://doi.org/10.1038/nbt.3469.

Yudkoff M, Daikhin Y, Nissim I, Jawad A, Wilson J, Batshaw M. In vivo nitrogen metabolism in ornithine transcarbamylase deficiency. J Clin Invest. 1996;98:2167-2173.

Yudkoff M, Daikhin Y, Ye X, Wilson JM, Batshaw ML. In vivo measurement of ureagenesis with stable isotopes. J Inherit Metab Dis. 1998;21(suppl 1):21-29.

Ah Mew N, Yudkoff M, Tuchman M. Stable isotopes in the diagnosis and treatment of inherited hyperammonemia. J Pediatr Biochem. 2014;4:57-63. https://doi.org/10.3233/JPB-140106.

Allegri G, Deplazes S, Grisch-Chan HM, et al. A simple dried blood spot-method for in vivo measurement of ureagenesis by gas chromatography-mass spectrometry using stable isotopes. Clin Chim Acta. 2017;464:236-243. https://doi.org/10.1016/j.cca.2016.11.038.

Clapcote SJ, Roder JC. Simplex PCR assay for sex determination in mice. Biotechniques. 2005;38:702-704, 706. https://doi.org/10.2144/05385BM05.

Krijt J, Sokolova J, Jesina P, et al. Activity of the liver enzyme ornithine carbamoyltransferase (OTC) in blood: LC-MS/MS assay for non-invasive diagnosis of ornithine carbamoyltransferase deficiency. Clin Chem Lab Med. 2017;55:1168-1177. https://doi.org/10.1515/cclm-2016-0715.

de Sain-van der Velden MG, Rinaldo P, Elvers B, et al. The proline/citrulline ratio as a biomarker for OAT deficiency in early infancy. JIMD Rep. 2012;6:95-99. https://doi.org/10.1007/8904_2011_122.

Liu J, Lkhagva E, Chung HJ, Kim HJ, Hong ST. The pharmabiotic approach to treat hyperammonemia. Nutrients. 2018;10(2). pii: E140. https://doi.org/10.3390/nu10020140.

Yudkoff M, Ah Mew N, Daikhin Y, et al. Measuring in vivo ureagenesis with stable isotopes. Mol Genet Metab. 2010;100(suppl 1):S37-S41.

Gautschi M, Eggimann S, Nuoffer JM. Current role of enzyme analysis for urea cycle disorders. J Pediatr Biochem. 2014;4:23-32.

Ward Platt M, Deshpande S. Metabolic adaptation at birth. Semin Fetal Neonatal Med. 2005;10:341-350. https://doi.org/10.1016/j.siny.2005.04.001.

Gors S, Kucia M, Langhammer M, Junghans P, Metges CC. Technical note: milk composition in mice--methodological aspects and effects of mouse strain and lactation day. J Dairy Sci. 2009;92:632-637. https://doi.org/10.3168/jds.2008-1563.

Häussinger D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J. 1990;267:281-290.

Gaunitz F, Deichsel D, Heise K, Werth M, Anderegg U, Gebhardt R. An intronic silencer element is responsible for specific zonal expression of glutamine synthetase in the rat liver. Hepatology. 2005;41:1225-1232. https://doi.org/10.1002/hep.20710.

Häussinger D, Sies H, Gerok W. Functional hepatocyte heterogeneity in ammonia metabolism: the intercellular glutamine cycle. J Hepatol. 1985;1:3-14.

Skarpetas A, Mawal Y, Qureshi IA. Developmental study of hepatic glutamine synthetase in a mouse model of congenital hyperammonemia. Biochem Mol Biol Int. 1997;43:133-139.

Shiojiri N, Ohta T, Ogawa K, Gebhardt R. Complementary expression of glutamine synthetase and carbamoylphosphate synthetase I in ornithine carbamoyltransferase-deficient mouse liver (spf-ash mouse). Histochem Cell Biol. 1997;108:489-494.

Iyer RK, Yoo PK, Kern RM, et al. Mouse model for human arginase deficiency. Mol Cell Biol. 2002;22:4491-4498.

Shah GN, Rubbelke TS, Hendin J, et al. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci USA. 2013;110:7423-7428. https://doi.org/10.1073/pnas.1305805110.

Alonso E, Rubio V. Orotic aciduria due to arginine deprivation: changes in the levels of carbamoyl phosphate and of other urea cycle intermediates in mouse liver. J Nutr. 1989;119:1188-1195.

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559-563. https://doi.org/10.1038/nature12820.

Häberle J. Clinical practice: the management of hyperammonemia. Eur J Pediatr. 2011;170:21-34.

Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302:G168-G175. https://doi.org/10.1152/ajpgi.00190.2011.

Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59-64. https://doi.org/10.1038/nature13568.

Malaguarnera M, Gargante MP, Malaguarnera G, et al. Bifidobacterium combined with fructo-oligosaccharide versus lactulose in the treatment of patients with hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010;22:199-206. https://doi.org/10.1097/MEG.0b013e328330a8d3.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...