Mass Spectrometry Amyloid Typing Is Reproducible across Multiple Organ Sites
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30834260
PubMed Central
PMC6374819
DOI
10.1155/2019/3689091
Knihovny.cz E-resources
- MeSH
- Amyloid genetics isolation & purification metabolism MeSH
- Amyloidosis genetics metabolism pathology MeSH
- Chromatography, Liquid MeSH
- Formaldehyde MeSH
- Mass Spectrometry MeSH
- Liver metabolism pathology MeSH
- Tongue metabolism pathology MeSH
- Kidney metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Myocardium metabolism pathology MeSH
- Proteomics * MeSH
- Antibodies immunology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Intestine, Small metabolism pathology MeSH
- Tissue Distribution genetics MeSH
- Paraffin Embedding MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid MeSH
- Formaldehyde MeSH
- Antibodies MeSH
We have determined patient's amyloid subtype through immunohistochemical and proteomic analyses of formalin-fixed, paraffin-embedded (FFPE) tissue samples from two affected organs per patient. Amyloid typing, via immunohistochemistry (IHC) and laser microdissection followed by the combination of liquid chromatography with mass spectrometry (LMD-LC-MS), was performed using tissue samples of the human heart, liver, kidney, tongue, and small intestine from 11 patients, and the results were compared with clinical data. LMD-LC-MS correctly typed AL amyloidosis in all 22 FFPE tissue samples despite tissue origin. In contrast, IHC was successful only in the analysis of eight FFPE tissue samples with differences between the examined organs. In the majority of LMD-LC-MS typed samples, the level of IHC staining intensity for transthyretin and serum amyloid A was the same as that for Ig κ and Ig λ antibodies, suggesting low Ig κ or Ig λ antibodies reactivity and the additional antibody clones were essential for correct typing. Both methods used in the study were found to be suitable for amyloid typing, although LMD-LC-MS yielded more promising results than IHC.
See more in PubMed
Merlini G., Bellotti V. Molecular mechanisms of amyloidosis. The New England Journal of Medicine. 2003;349(6):583–596. doi: 10.1056/nejmra023144. PubMed DOI
Desport E., Bridoux F., Sirac C., et al. AL amyloidosis. Orphanet Journal of Rare Diseases. 2012;7, article 54 doi: 10.1186/1750-1172-7-54. PubMed DOI PMC
Hawkins P. N. Hereditary systemic amyloidosis with renal involvement. Journal of Nephrology. 2003;16:443–448. PubMed
Schönland S. O., Hegenbart U., Bochtler T., et al. Immunohistochemistry in the classification of systemic forms of amyloidosis: A systematic investigation of 117 patients. Blood. 2012;119(2):488–493. doi: 10.1182/blood-2011-06-358507. PubMed DOI
Telio D., Bailey D., Chen C., Crump M., Reece D., Kukreti V. Two distinct syndromes of lymphoma associated AL amyloidosis: a case series and review of the literature. American Journal of Hematology. 2010;85(10):805–808. doi: 10.1002/ajh.21814. PubMed DOI
Sipe J. D., Benson M. D., Buxbaum J. N., et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23(4):209–213. doi: 10.1080/13506129.2016.1257986. PubMed DOI
Sipe J. D., Benson M. D., Buxbaum J. N. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21(4):221–224. doi: 10.3109/13506129.2014.964858. PubMed DOI
Sipe J. D., Benson M. D., Buxbaum J. N., et al. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid. 2012;19(4):167–170. doi: 10.3109/13506129.2012.734345. PubMed DOI
Puchtler H., Sweat F., Kuhns J. G. On the binding of direct cotton dyes by amyloid. Journal of Histochemistry & Cytochemistry. 2016;12(12):900–907. doi: 10.1177/12.12.900. PubMed DOI
Linke R. P. On Typing Amyloidosis Using Immunohistochemistry. Detailled Illustrations, Review and a Note on Mass Spectrometry. Progress in Histochemistry and Cytochemistry. 2012;47(2):61–132. doi: 10.1016/j.proghi.2012.03.001. PubMed DOI
Leung N., Nasr S. H., Sethi S. How I Treat amyloidosis: The importance of accurate diagnosis and amyloid typing. Blood. 2012;120(16):3206–3213. doi: 10.1182/blood-2012-03-413682. PubMed DOI
Chee C. E., Lacy M. Q., Dogan A., Zeldenrust S. R., Gertz M. A. Pitfalls in the diagnosis of primary amyloidosis. Clinical Lymphoma, Myeloma & Leukemia. 2010;10(3):177–180. doi: 10.3816/CLML.2010.n.027. PubMed DOI
Satoskar A. A., Efebera Y., Hasan A., et al. Strong transthyretin immunostaining: Potential pitfall in cardiac amyloid typing. The American Journal of Surgical Pathology. 2011;35(11):1685–1690. doi: 10.1097/PAS.0b013e3182263d74. PubMed DOI PMC
Klein C. J., Vrana J. A., Theis J. D., et al. Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. JAMA Neurology. 2011;68(2):195–199. PubMed PMC
Lavatelli F., Vrana J. A. Proteomic typing of amyloid deposits in systemic amyloidoses. Amyloid. 2011;18(4):177–182. doi: 10.3109/13506129.2011.630762. PubMed DOI
Theis J. D., Dasari S., Vrana J. A., Kurtin P. J., Dogan A. Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. Journal of Mass Spectrometry. 2013;48:1067–1077. doi: 10.1002/jms.3264. PubMed DOI
Vrana J. A., Gamez J. D., Madden B. J., Theis J. D., Bergen H. R., III, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114(24):4957–4959. doi: 10.1182/blood-2009-07-230722. PubMed DOI
Dasari S., Theis J. D., Vrana J. A., et al. Clinical proteome informatics workbench detects pathogenic mutations in hereditary amyloidoses. Journal of Proteome Research. 2014;13(5):2352–2358. doi: 10.1021/pr4011475. PubMed DOI
Sethi S., Vrana J. A., Theis J. D., et al. Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis. Kidney International. 2012;82(2):226–234. doi: 10.1038/ki.2012.108. PubMed DOI PMC
Cox J., Mann M. Maxquant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research. 2011;10(4):1794–1805. doi: 10.1021/pr101065j. PubMed DOI
Merlini G., Palladini G. Amyloidosis: Is a cure possible? Annals of Oncology. 2008;19(4):iv63–iv66. doi: 10.1093/annonc/mdn200. PubMed DOI
Rodriguez F. J., Gamez J. D., Vrana J. A., et al. Immunoglobulin derived depositions in the nervous system: Novel mass spectrometry application for protein characterization in formalin-fixed tissues. Laboratory Investigation. 2008;88(10):1024–1037. doi: 10.1038/labinvest.2008.72. PubMed DOI
Picken M. M. Immunoglobulin light and heavy chain amyloidosis AL/AH: renal pathology and differential diagnosis. Contributions to Nephrology. 2007;153:135–155. PubMed
Lachmann H. J., Booth D. R., Booth S. E., et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. The New England Journal of Medicine. 2002;346(23):1786–1791. doi: 10.1056/nejmoa013354. PubMed DOI
Novak L., Cook W. J., Herrera G. A., Sanders P. W. AL-amyloidosis is underdiagnosed in renal biopsies. Nephrology Dialysis Transplantation . 2004;19(12):3050–3053. doi: 10.1093/ndt/gfh503. PubMed DOI