Bioproduction of Quercetin and Rutinose Catalyzed by Rutinosidase: Novel Concept of "Solid State Biocatalysis"

. 2019 Mar 05 ; 20 (5) : . [epub] 20190305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30841519

Grantová podpora
18-00150S Grantová Agentura České Republiky
ITMS 26230120006 Slovak Research Agency

Quercetin is a flavonoid largely employed as a phytochemical remedy and a food or dietary supplement. We present here a novel biocatalytic methodology for the preparation of quercetin from plant-derived rutin, with both substrate and product being in mostly an undissolved state during biotransformation. This "solid-state" enzymatic conversion uses a crude enzyme preparation of recombinant rutinosidase from Aspergillus niger yielding quercetin, which precipitates from virtually insoluble rutin. The process is easily scalable and exhibits an extremely high space-time yield. The procedure has been shown to be robust and was successfully tested with rutin concentrations of up to 300 g/L (ca 0.5 M) at various scales. Using this procedure, pure quercetin is easily obtained by mere filtration of the reaction mixture, followed by washing and drying of the filter cake. Neither co-solvents nor toxic chemicals are used, thus the process can be considered environmentally friendly and the product of "bio-quality." Moreover, rare disaccharide rutinose is obtained from the filtrate at a preparatory scale as a valuable side product. These results demonstrate for the first time the efficiency of the "Solid-State-Catalysis" concept, which is applicable virtually for any biotransformation involving substrates and products of low water solubility.

Zobrazit více v PubMed

Russo M., Spagnuolo C., Tedesco I., Bilotto S., Russo G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012;83:6–15. doi: 10.1016/j.bcp.2011.08.010. PubMed DOI

Almeida A.F., Borge G.I.A., Piskula M., Tudose A., Tudoreanu L., Valentová K., Williamson G., Santos C.N. Bioavailability of quercetin in humans with a focus on inter-individual variation. Compr. Rev. Food Sci. Food Saf. 2018;17:714–731. doi: 10.1111/1541-4337.12342. PubMed DOI

Valentová K., Vrba J., Bancířová M., Ulrichová J., Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI

Gullon B., Lu-Chau T.A., Moreira M.T., Lema J.M., Eibes G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017;67:220–235. doi: 10.1016/j.tifs.2017.07.008. DOI

D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256–271. doi: 10.1016/j.fitote.2015.09.018. PubMed DOI

Özyurt H., Çevik Ö., Özgen Z., Ozden A.S., Cadirci S., Elmas M.A., Ercan F., Gören M.Z., Şener G. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Rad. Res. 2014;48:1247–1255. doi: 10.3109/10715762.2014.945925. PubMed DOI

Schimmer O., Kruger A., Paulini H., Haefele F. An evaluation of 55 commercial plant-extracts in the Ames mutagenicity test. Pharmazie. 1994;49:448–451. PubMed

Andres S., Pevny S., Ziegenhagen R., Bakhiya N., Schäfer B., Hirsch-Ernst K.I., Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2017;62:1700447. doi: 10.1002/mnfr.201700447. PubMed DOI

Carullo G., Cappello A.R., Frattaruolo L., Badolato M., Armentano B., Aiello F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem. 2017;9:79–93. doi: 10.4155/fmc-2016-0186. PubMed DOI

Biler M., Biedermann D., Valentová K., Křen V., Kubala M. Quercetin and its analogues: Optical and acido-basic properties. Phys. Chem. Chem. Phys. 2017;19:26870–26879. doi: 10.1039/C7CP03845C. PubMed DOI

Levdanskii V.A., Polezhaeva N.I., Kuznetsov B.N. Method for Producing Quercetin, Involves Oxidizing Larch Wood with Sodium Nitrite and Hydrolysis by Superheated Vapor and Subjecting to Rapid Decompression. RU2182906-C1. Russian Patent. 2001 Jun 13;

Zhao Z. Production of Quercetin by Mixing Inorganic Strong Acid and Water, Adding Rutin, Boiling, Filtering, Hydrolyzing, Washing Cake with Water, Drying, Mixing Cake with Methanol, Filtering, Washing Cake with Methanol and Water, and Drying. CN104387357-A. Chinese Patent. 2011 Dec 19;

Wang J., Zhao L.-L., Sun G.-X., Liang Y., Wu F.-A., Chen Z., Cui S. A comparison of acidic and enzymatic hydrolysis of rutin. Afr. J. Biotechnol. 2011;10:1460–1466. doi: 10.5897/AJB10.2077. DOI

Cui X., Wang Z. New Rutin Hydrolase Used for Preparing Quercetin From Rutin, Prepared by Extracting Tartary Buckwheat Powder Using Acetate Buffer, and Processing Extract in Anion Exchange Chromatography and Gel Chromatography. CN101787361-A. Chinese Patent. 2010 Jan 11;

Nam H.K., Hong S.-H., Shin K.-C., Oh D.-K. Quercetin production from rutin by a thermostable beta-rutinosidase from Pyrococcus furiosus. Biotechnol. Lett. 2012;34:483–489. doi: 10.1007/s10529-011-0786-2. PubMed DOI

Rebroš M., Pilniková A., Šimčíková D., Weignerová L., Stloukal R., Křen V., Rosenberg M. Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal. Biotransform. 2013;31:329–334. doi: 10.3109/10242422.2013.858711. DOI

Šimčíková M., Kotik M., Weignerová L., Halada P., Pelantová H., Adamcová K., Křen V. α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: Characterization and synthetic potential of a novel diglycosidase. Adv. Synth. Catal. 2015;357:107–117. doi: 10.1002/adsc.201400566. DOI

Salamin K., Sriranganadane D., Léchenne B., Jousson O., Monod M. Secretion of an endogenous subtilisin by Pichia pastoris strains GS115 and KM71. Appl. Environ. Microbiol. 2010;76:4269–4276. doi: 10.1128/AEM.00412-10. PubMed DOI PMC

Markošová K., Weignerová L., Rosenberg M., Křen V., Rebroš M. Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris MutS strain. Front. Microbiol. 2015;6:1140. doi: 10.3389/fmicb.2015.01140. PubMed DOI PMC

Bojarová P., Kulik N., Slámová K., Hubálek M., Kotik M., Cvačka J., Pelantová H., Křen V. Selective β-N-acetylhexosaminidase from Aspergillus versicolor—A tool for producing bioactive carbohydrates. Appl. Microbiol. Biotechnol. 2019;103:1737–1753. doi: 10.1007/s00253-018-9534-z. PubMed DOI

Weignerová L., Marhol P., Gerstorferová D., Křen V. Preparatory production of quercetin-3-β-D-glucopyranoside using alkali-tolerant thermostable α-L-rhamnosidase from Aspergillus terreus. Bioresour. Technol. 2012;115:222–227. doi: 10.1016/j.biortech.2011.08.029. PubMed DOI

Faury G., Molinari J., Rusova E., Mariko B., Raveaud S., Huber P., Velebný V., Robert A.M., Robert L. Receptors and aging: Structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca2+-mobilization and gene-expression profiles. Arch. Gerontol. Geriatr. 2011;53:106–112. doi: 10.1016/j.archger.2010.05.017. PubMed DOI

Vishniac W., Santer M. The thiobacilli. Bacteriol. Rev. 1957;21:195–213. PubMed PMC

Bassanini I., Krejzová J., Panzeri W., Křen V., Monti D., Riva S. A sustainable one-pot two-enzyme synthesis of naturally occurring arylalkyl glucosides. ChemSusChem. 2017;10:2040–2045. doi: 10.1002/cssc.201700136. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace