Determination of Optical Purity of Lactic Acid-Based Chiral Liquid Crystals and Corresponding Building Blocks by Chiral High-Performance Liquid Chromatography and Supercritical Fluid Chromatography
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-17689Y
Grantová Agentura České Republiky
PubMed
30897743
PubMed Central
PMC6471377
DOI
10.3390/molecules24061099
PII: molecules24061099
Knihovny.cz E-zdroje
- Klíčová slova
- chiral liquid crystals, chiral separation, enantioseparation of liquid crystals, mass spectrometry detection, mesomorphic properties, optical purity, supercritical fluid chromatography,
- MeSH
- hmotnostní spektrometrie MeSH
- kapalné krystaly * MeSH
- kyselina mléčná chemie MeSH
- stereoizomerie MeSH
- superkritická fluidní chromatografie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná MeSH
Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis.
Zobrazit více v PubMed
Goodby J.W., Collings P.J., Kato T., Tschierske C., Gleeson H.F., Raynes P. Handbook of Liquid Crystals. Wiley-VCH Verlag; Weinheim, Germany: 2014.
Kato T., Uchida J., Ichikawa T., Sakamoto T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. 2018;57:4355–4371. doi: 10.1002/anie.201711163. PubMed DOI
Bisoyi H.K., Bunning T.J., Li Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures. Adv. Mater. 2018;30:1706512. doi: 10.1002/adma.201706512. PubMed DOI
Jing H., Xu M., Xiang Y., Wang E., Liu D., Poryvai A., Kohout M., Éber N., Buka Á. Light tunable gratings based on flexoelectric effect in photoresponsive bent-core nematics. Adv. Opt. Mater. 2019 doi: 10.1002/adom.201801790. DOI
Collings P.J., Hird M. Introduction to Liquid Crystals: Chemistry and Physics. Taylor & Francis; London, UK: 1997.
Gennes P.D., Prost J., Pelcovits R. The physics of liquid crystals. Phys. Today. 1995;48:67. doi: 10.1063/1.2808028. DOI
Stephen M.J., Straley J.P. Physics of liquid crystals. Rev. Mod. Phys. 1974;46:617–704. doi: 10.1103/RevModPhys.46.617. DOI
Černovská K., Košata B., Svoboda J., Novotná V., Glogarová M. Novel ferroelectric liquid crystals based on fused thieno[3,2-b]furan and thieno[3,2-b]thiophene cores. Liq. Cryst. 2006;33:987–996. doi: 10.1080/02678290600905404. DOI
Vaňkátová P., Kalíková K., Kubíčková A. Ultra-performance supercritical fluid chromatography: A powerful tool for the enantioseparation of thermotropic fluorinated liquid crystals. Anal. Chim. Acta. 2018;1038:191–197. doi: 10.1016/j.aca.2018.07.001. PubMed DOI
Vaňkátová P., Kubíčková A., Cigl M., Kalíková K. Ultra-performance chromatographic methods for enantioseparation of liquid crystals based on lactic acid. J. Supercrit. Fluids. 2019;146:217–225. doi: 10.1016/j.supflu.2019.02.002. DOI
Vojtylová T., Kašpar M., Hamplová V., Novotná V., Sýkora D. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid. Phase Trans. 2014;87:758–769. doi: 10.1080/01411594.2014.893344. DOI
Vojtylová T., Żurowska M., Milewska K., Hamplová V., Sýkora D. Chiral HPLC and physical characterisation of orthoconic antiferroelectric liquid crystals. Liq. Cryst. 2016;43:1244–1250. doi: 10.1080/02678292.2016.1166401. DOI
Jurkovičová-Vojtylová T., Cigl M., Tomášková P., Hamplová V., Sýkora D. Influence of photoinduced isomerization on the chiral separation of novel liquid crystalline materials with a diazene moiety. J. Sep. Sci. 2018;41:3034–3041. doi: 10.1002/jssc.201800301. PubMed DOI
Bajzíková K., Kohout M., Tarábek J., Svoboda J., Novotná V., Vejpravová J., Pociecha D., Gorecka E. All-organic liquid crystalline radicals with a spin unit in the outer position of a bent-core system. J. Mater. Chem. C. 2016;4:11540–11547. doi: 10.1039/C6TC04346A. DOI
Barberá J., Iglesias R., Serrano J.L., Sierra T., de la Fuente M.R., Palacios B., Pérez-Jubindo M.A., Vázquez J.T. Switchable columnar metallomesogens. New helical self-assembling systems. J. Am. Chem. Soc. 1998;120:2908–2918. doi: 10.1021/ja9735012. DOI
Chin E., Goodby J.W., Patel J.S. The liquid-crystalline properties of some chiral derivatives of the 4-n-alkanoyloxbiphenyl-4’-carboxylic acids. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1988;157:163–191. doi: 10.1080/00268948808080232. DOI
Kobayashi S., Ishibashi S. Ferroelectric liquid crystals with chiral groups on each side of the core. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 1992;220:1–17. doi: 10.1080/10587259208033424. DOI
Kohout M., Bubnov A., Šturala J., Novotná V., Svoboda J. Effect of alkyl chain length in the terminal ester group on mesomorphic properties of new chiral lactic acid derivatives. Liq. Cryst. 2016;43:1472–1485. doi: 10.1080/02678292.2016.1185170. DOI
Kovářová A., Kohout M., Svoboda J., Novotná V. New liquid crystal based on 2-phenylthiophene central core. Liq. Cryst. 2014;41:1703–1718. doi: 10.1080/02678292.2014.949887. DOI
Joullie M.M., Lassen K.M. Evolution of amide bond formation. Arkivoc. 2010;2010:189–250.
Kohout M., Bielec B., Steindl P., Trettenhahn G., Lindner W. Mechanistic aspects of the direct C-acylation of cyclic 1,3-diones with various unactivated carboxylic acids. Tetrahedron. 2015;71:2698–2707. doi: 10.1016/j.tet.2015.03.037. DOI
Twibanire J.A.K., Grindley T.B. Efficient and controllably selective preparation of esters using uronium-based coupling agents. Org. Lett. 2011;13:2988–2991. doi: 10.1021/ol201005s. PubMed DOI
Stevens P.G. The configuration of methylisopropylcarbinol with a note on racemization. J. Am. Chem. Soc. 1932;54:3732–3738. doi: 10.1021/ja01348a037. DOI
Mangelings D., Vander Heyden Y. Chiral separations in sub- and supercritical fluid chromatography. J. Sep. Sci. 2008;31:1252–1273. doi: 10.1002/jssc.200700564. PubMed DOI
Tarafder A., Guiochon G. Extended zones of operations in supercritical fluid chromatography. J. Chromatogr. A. 2012;1265:165–175. doi: 10.1016/j.chroma.2012.09.062. PubMed DOI
Wolrab D., Frühauf P., Gerner C., Kohout M., Lindner W. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger. J. Chromatogr. A. 2017;1517:165–175. doi: 10.1016/j.chroma.2017.08.022. PubMed DOI
Wolrab D., Kohout M., Boras M., Lindner W. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography. J. Chromatogr. A. 2013;1289:94–104. doi: 10.1016/j.chroma.2013.03.018. PubMed DOI
Wolrab D., Macíková P., Boras M., Kohout M., Lindner W. Strong cation exchange chiral stationary phase—A comparative study in high-performance liquid chromatography and subcritical fluid chromatography. J. Chromatogr. A. 2013;1317:59–66. doi: 10.1016/j.chroma.2013.08.037. PubMed DOI