Pulmonary Limitations in Heart Failure

. 2019 Jun ; 40 (2) : 439-448.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31078220

Grantová podpora
R01 HL071478 NHLBI NIH HHS - United States

Odkazy

PubMed 31078220
PubMed Central PMC6541018
DOI 10.1016/j.ccm.2019.02.010
PII: S0272-5231(19)30010-3
Knihovny.cz E-zdroje

The heart and lungs are intimately linked. Hence, impaired function of one organ may lead to changes in the other. Accordingly, heart failure is associated with airway obstruction, loss of lung volume, impaired gas exchange, and abnormal ventilatory control. Cardiopulmonary exercise testing is an excellent tool for evaluation of gas exchange and ventilatory control. Indeed, many parameters routinely measured during cardiopulmonary exercise testing, including the level of minute ventilation per unit of carbon dioxide production and the presence of exercise oscillatory ventilation, have been found to be strongly associated with prognosis in patients with heart failure.

Zobrazit více v PubMed

Ceridon M, Wanner A, Johnson BD. Does the bronchial circulation contribute to congestion in heart failure? Med Hypotheses. 2009;73(3):414–419. doi:10.1016/j.mehy.2009.03.033 PubMed DOI PMC

Olson TP, Beck KC, Johnson JB, Johnson BD. Competition for Intrathoracic Space Reduces Lung Capacity in Patients With Chronic Heart Failure*A Radiographic Study. CHEST. 2006;130(1):164–171. doi:10.1378/chest.130.1.164 PubMed DOI

Guazzi M Alveolar Gas Diffusion Abnormalities in Heart Failure. Journal of Cardiac Failure. 2008;14(8):695–702. doi:10.1016/j.cardfail.2008.06.004 PubMed DOI

Siegel JL, Miller A, Brown LK, DeLuca A, Teirstein AS. Pulmonary diffusing capacity in left ventricular dysfunction. Chest. 1990;98(3):550–553. PubMed

Arena R, Myers J, Abella J, et al. The Partial Pressure of Resting End-Tidal Carbon Dioxide Predicts Major Cardiac Events In Patients with Systolic Heart Failure. Am Heart J. 2008;156(5):982–988. doi:10.1016/j.ahj.2008.06.024 PubMed DOI PMC

Woods PR, Olson TP, Frantz RP, Johnson BD. Causes of breathing inefficiency during exercise in heart failure. J Card Fail. 2010;16(10):835–842. doi:10.1016/j.cardfail.2010.05.003 PubMed DOI PMC

Cundrle I, Somers VK, Johnson BD, Scott CG, Olson LJ. Exercise end-tidal CO2 predicts central sleep apnea in patients with heart failure. Chest. 2015;147(6):1566–1573. doi:10.1378/chest.14-2114 PubMed DOI PMC

Johnson BD, Beck KC, Olson LJ, et al. Ventilatory constraints during exercise in patients with chronic heart failure. Chest. 2000;117(2):321–332. PubMed

Ceridon ML, Morris NR, Hulsebus ML, Olson TP, Lalande S, Johnson BD. Influence of bronchial blood flow and conductance on pulmonary function in stable systolic heart failure. Respir Physiol Neurobiol. 2011;177(3):256–264. doi:10.1016/j.resp.2011.04.020 PubMed DOI PMC

Johnson BD, Beck KC, Olson LJ, et al. Pulmonary function in patients with reduced left ventricular function: influence of smoking and cardiac surgery. Chest. 2001;120(6):1869–1876. PubMed

Agostoni PG, Doria E, Bortone F, Antona C, Moruzzi P. Systemic to pulmonary bronchial blood flow in heart failure. Chest. 1995;107(5):1247–1252. PubMed

Wagner EM, Mitzner WA. Effect of left atrial pressure on bronchial vascular hemodynamics. J Appl Physiol. 1990;69(3):837–842. doi:10.1152/jappl.1990.69.3.837 PubMed DOI

Agostoni P, Cattadori G, Bussotti M, Apostolo A. Cardiopulmonary interaction in heart failure. Pulm Pharmacol Ther. 2007;20(2):130–134. doi:10.1016/j.pupt.2006.03.001 PubMed DOI

Long WM, Yerger LD, Martinez H, et al. Modification of bronchial blood flow during allergic airway responses. Journal of Applied Physiology. 1988;65(1):272–282. doi:10.1152/jappl.1988.65.1.272 PubMed DOI

Lorenzi-Filho G, Azevedo ER, Parker JD, Bradley TD. Relationship of carbon dioxide tension in arterial blood to pulmonary wedge pressure in heart failure. Eur Respir J. 2002;19(1):37–40. PubMed

Ceridon ML, Snyder EM, Olson TP, Hulsebus ML, Johnson BD. Influence of acute graded hypoxia on the bronchial circulation in healthy humans. The FASEB Journal. 2008;22(1_supplement):1150.15–1150.15. doi:10.1096/fasebj.22.1_supplement.1150.15 DOI

King LS, Nielsen S, Agre P, Brown RH. Decreased pulmonary vascular permeability in aquaporin-1-null humans. Proc Natl Acad Sci USA. 2002;99(2):1059–1063. doi:10.1073/pnas.022626499 PubMed DOI PMC

Ceridon ML, Snyder EM, Strom NA, Tschirren J, Johnson BD. Influence of rapid fluid loading on airway structure and function in healthy humans. J Card Fail. 2010;16(2):175–185. doi:10.1016/j.cardfail.2009.08.005 PubMed DOI PMC

Bucca CB, Brussino L, Battisti A, et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest. 2007;132(2):440–446. doi:10.1378/chest.07-0311 PubMed DOI

Shin JT, Semigran MJ. Heart Failure and Pulmonary Hypertension. Heart Fail Clin. 2010;6(2):215–222. doi:10.1016/j.hfc.2009.11.007 PubMed DOI PMC

Meyer FJ, Ewert R, Hoeper MM, et al. Peripheral airway obstruction in primary pulmonary hypertension. Thorax. 2002;57(6):473–476. PubMed PMC

Rastogi D, Ngai P, Barst RJ, Koumbourlis AC. Lower airway obstruction, bronchial hyperresponsiveness, and primary pulmonary hypertension in children. Pediatr Pulmonol. 2004;37(1):50–55. doi:10.1002/ppul.10363 PubMed DOI

Rothman A, Kulik TJ. Pulmonary hypertension and asthma in two patients with congenital heart disease. Am J Dis Child. 1989;143(8):977–979. PubMed

Miller WW, Park CD, Waldhausen JA. Bronchial compression from enlarged, hypertensive right pulmonary artery with corrected transposition of great arteries, dextrocardia, and ventricular septal defect. Diagnosis and surgical treatment. J Thorac Cardiovasc Surg. 1970;60(2):233–236. PubMed

Haworth SG, Hall SM, Panja M, Patel M. Peripheral pulmonary vascular and airway abnormalities in adolescents with rheumatic mitral stenosis. Int J Cardiol. 1988;18(3):405–416. PubMed

Leeds SE, Uhley HN, Teleszky LB. Direct cannulation and injection lymphangiography of the canine cardiac and pulmonary efferent mediastinal lymphatics in experimental congestive heart failure. Invest Radiol. 1981;16(3):193–200. PubMed

Agostoni P, Cattadori G, Guazzi M, Palermo P, Bussotti M, Marenzi G. Cardiomegaly as a possible cause of lung dysfunction in patients with heart failure. American Heart Journal. 2000;140(5):A17–A21. doi:10.1067/mhj.2000.110282 PubMed DOI

McCormack DG. Increase in vital capacity after cardiac transplantation. Am J Med. 1991;90(5):660–661. PubMed

Puri S, Baker BL, Dutka DP, Oakley CM, Hughes JM, Cleland JG. Reduced alveolar-capillary membrane diffusing capacity in chronic heart failure. Its pathophysiological relevance and relationship to exercise performance. Circulation. 1995;91(11):2769–2774. PubMed

Robertson HT, Pellegrino R, Pini D, et al. Exercise response after rapid intravenous infusion of saline in healthy humans. J Appl Physiol. 2004;97(2):697–703. doi:10.1152/japplphysiol.00108.2004 PubMed DOI

Mutlu GM, Factor P. Alveolar epithelial beta2-adrenergic receptors. Am J Respir Cell Mol Biol. 2008;38(2):127–134. doi:10.1165/rcmb.2007-0198TR PubMed DOI PMC

Guazzi M, Pontone G, Brambilla R, Agostoni P, Rèina G. Alveolar--capillary membrane gas conductance: a novel prognostic indicator in chronic heart failure. Eur Heart J. 2002;23(6):467–476. doi:10.1053/euhj.2001.2803 PubMed DOI

Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol (Lond). 2012;590(17):4279–4288. doi:10.1113/jphysiol.2012.234310 PubMed DOI PMC

Agostoni PG, Marenzi GC, Pepi M, et al. Isolated ultrafiltration in moderate congestive heart failure. J Am Coll Cardiol. 1993;21(2):424–431. PubMed

Mettauer B, Lampert E, Charloux A, et al. Lung membrane diffusing capacity, heart failure, and heart transplantation. American Journal of Cardiology. 1999;83(1):62–67. doi:10.1016/S0002-9149(98)00784-X PubMed DOI

Cundrle I, Johnson BD, Somers VK, Scott CG, Rea RF, Olson LJ. Effect of cardiac resynchronization therapy on pulmonary function in patients with heart failure. Am J Cardiol. 2013;112(6):838–842. doi:10.1016/j.amjcard.2013.05.012 PubMed DOI PMC

Agostoni P, Swenson ER, Fumagalli R, et al. Acute high-altitude exposure reduces lung diffusion: data from the HIGHCARE Alps project. Respir Physiol Neurobiol. 2013;188(2):223–228. doi:10.1016/j.resp.2013.04.005 PubMed DOI

Banfi C, Agostoni P. Surfactant protein B: From biochemistry to its potential role as diagnostic and prognostic marker in heart failure. International Journal of Cardiology. 2016;221:456–462. doi:10.1016/j.ijcard.2016.07.003 PubMed DOI

De Pasquale CG, Arnolda LF, Doyle IR, Aylward PE, Chew DP, Bersten AD. Plasma surfactant protein-B: a novel biomarker in chronic heart failure. Circulation. 2004;110(9):1091–1096. doi:10.1161/01.CIR.0000140260.73611.FA PubMed DOI

Gargiulo P, Banfi C, Ghilardi S, et al. Surfactant-Derived Proteins as Markers of Alveolar Membrane Damage in Heart Failure. PLOS ONE. 2014;9(12):e115030. doi:10.1371/journal.pone.0115030 PubMed DOI PMC

Magrì D, Banfi C, Maruotti A, et al. Plasma immature form of surfactant protein type B correlates with prognosis in patients with chronic heart failure. A pilot single-center prospective study. Int J Cardiol. 2015;201:394–399. doi:10.1016/j.ijcard.2015.08.105 PubMed DOI

Fanfulla F, Mortara A, Maestri R, et al. The development of hyperventilation in patients with chronic heart failure and Cheyne-Strokes respiration: a possible role of chronic hypoxia. Chest. 1998;114(4):1083–1090. PubMed

Arena R, Myers J, Aslam SS, Varughese EB, Peberdy MA. Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J. 2004;147(2):354–360. doi:10.1016/j.ahj.2003.07.014 PubMed DOI

Johnson RL. Gas Exchange Efficiency in Congestive Heart Failure. Circulation. 2000;101(24):2774–2776. doi:10.1161/01.CIR.101.24.2774 PubMed DOI

Roberts AM, Bhattacharya J, Schultz HD, Coleridge HM, Coleridge JC. Stimulation of pulmonary vagal afferent C-fibers by lung edema in dogs. Circ Res. 1986;58(4):512–522. PubMed

Lloyd TCJ. Effect of increased left atrial pressure on breathing frequency in anesthetized dog. J Appl Physiol. 1990;69(6):1973–1980. PubMed

Olson TP, Frantz RP, Snyder EM, O’Malley KA, Beck KC, Johnson BD. Effects of acute changes in pulmonary wedge pressure on periodic breathing at rest in heart failure patients. Am Heart J. 2007;153(1):104.e1–7. doi:10.1016/j.ahj.2006.10.003 PubMed DOI PMC

Olson TP, Joyner MJ, Johnson BD. Influence of locomotor muscle metaboreceptor stimulation on the ventilatory response to exercise in heart failure. Circ Heart Fail. 2010;3(2):212–219. doi:10.1161/CIRCHEARTFAILURE.109.879684 PubMed DOI PMC

Olson LJ, Arruda-Olson AM, Somers VK, Scott CG, Johnson BD. Exercise Oscillatory Ventilation. Chest. 2008;133(2):474–481. doi:10.1378/chest.07-2146 PubMed DOI PMC

Massie BM, Simonini A, Sahgal P, Wells L, Dudley GA. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure. Journal of the American College of Cardiology. 1996;27(1):140–145. doi:10.1016/0735-1097(95)00416-5 PubMed DOI

Wilson JR, Mancini DM. Factors contributing to the exercise limitation of heart failure. J Am Coll Cardiol. 1993;22(4 Suppl A):93A–98A. PubMed

Wensel R, Francis DP, Georgiadou P, et al. Exercise hyperventilation in chronic heart failure is not caused by systemic lactic acidosis. Eur J Heart Fail. 2005;7(7):1105–1111. doi:10.1016/j.ejheart.2004.12.005 PubMed DOI

Wasserman K, Zhang YY, Gitt A, et al. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997;96(7):2221–2227. PubMed

Banning AP, Lewis NP, Northridge DB, Elborn JS, Hendersen AH. Perfusion/ventilation mismatch during exercise in chronic heart failure: an investigation of circulatory determinants. Br Heart J. 1995;74(1):27–33. PubMed PMC

Reindl I, Wernecke K-D, Opitz C, et al. Impaired ventilatory efficiency in chronic heart failure: Possible role of pulmonary vasoconstriction. American Heart Journal. 1998;136(5):778–785. doi:10.1016/S0002-8703(98)70121-8 PubMed DOI

Francis DP, Shamim W, Davies LC, et al. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO2slope and peak VO2. Eur Heart J. 2000;21(2):154–161. doi:10.1053/euhj.1999.1863 PubMed DOI

Arena R, Humphrey R. Comparison of ventilatory expired gas parameters used to predict hospitalization in patients with heart failure. American Heart Journal. 2002;143(3):427–432. doi:10.1067/mhj.2002.119607 PubMed DOI

Corrà U, Mezzani A, Bosimini E, Scapellato F, Imparato A, Giannuzzi P. Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. American Heart Journal. 2002;143(3):418–426. doi:10.1067/mhj.2002.120772 PubMed DOI

Chua TP, Ponikowski P, Harrington D, et al. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1997;29(7):1585–1590. PubMed

Kleber FX, Vietzke G, Wernecke KD, et al. Impairment of Ventilatory Efficiency in Heart Failure Prognostic Impact. Circulation. 2000;101(24):2803–2809. doi:10.1161/01.CIR.101.24.2803 PubMed DOI

Myers J, Gujja P, Neelagaru S, et al. End-tidal CO2 pressure and cardiac performance during exercise in heart failure. Med Sci Sports Exerc. 2009;41(1):19–25. doi:10.1249/MSS.0b013e318184c945 PubMed DOI

Arena R, Peberdy MA, Myers J, Guazzi M, Tevald M. Prognostic value of resting end-tidal carbon dioxide in patients with heart failure. Int J Cardiol. 2006;109(3):351–358. doi:10.1016/j.ijcard.2005.06.032 PubMed DOI

Seguchi O, Hisamatsu E, Nakano A, et al. Low partial pressure of end-tidal carbon dioxide predicts left ventricular assist device implantation in patients with advanced chronic heart failure. Int J Cardiol. 2017;230:40–46. doi:10.1016/j.ijcard.2016.12.102 PubMed DOI

Ingle L, Rigby AS, Sloan R, et al. Development of a composite model derived from cardiopulmonary exercise tests to predict mortality risk in patients with mild-to-moderate heart failure. Heart. 2014;100(10):781–786. doi:10.1136/heartjnl-2013-304614 PubMed DOI

Myers J, Arena R, Dewey F, et al. A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J. 2008;156(6):1177–1183. doi:10.1016/j.ahj.2008.07.010 PubMed DOI

Cundrle I, Johnson BD, Rea RF, Scott CG, Somers VK, Olson LJ. Modulation of ventilatory reflex control by cardiac resynchronization therapy. J Card Fail. 2015;21(5):367–373. doi:10.1016/j.cardfail.2014.12.013 PubMed DOI PMC

Bradley TD. The ups and downs of periodic breathingImplications for mortality in heart failure*. J Am Coll Cardiol. 2003;41(12):2182–2184. doi:10.1016/S0735-1097(03)00470-4 PubMed DOI

Leung RST, Douglas Bradley T. Sleep Apnea and Cardiovascular Disease. American Journal of Respiratory and Critical Care Medicine. 2001;164(12):2147–2165. doi:10.1164/ajrccm.164.12.2107045 PubMed DOI

Francis DP, Willson K, Davies LC, Coats AJS, Piepoli M. Quantitative General Theory for Periodic Breathing in Chronic Heart Failure and Its Clinical Implications. Circulation. 2000;102(18):2214–2221. doi:10.1161/01.CIR.102.18.2214 PubMed DOI

Bradley TD, Phillipson EA. Central sleep apnea. Clin Chest Med. 1992;13(3):493–505. PubMed

Clark AL, Piepoli M, Coats AJ. Skeletal muscle and the control of ventilation on exercise: evidence for metabolic receptors. Eur J Clin Invest. 1995;25(5):299–305. PubMed

Khoo MC, Kronauer RE, Strohl KP, Slutsky AS. Factors inducing periodic breathing in humans: a general model. J Appl Physiol. 1982;53(3):644–659. PubMed

Leite JJ, Mansur AJ, de Freitas HFG, et al. Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. J Am Coll Cardiol. 2003;41(12):2175–2181. PubMed

Steens RD, Millar TW, Su X, et al. Effect of inhaled 3% CO2 on Cheyne-Stokes respiration in congestive heart failure. Sleep. 1994;17(1):61–68. PubMed

Murphy RM, Shah RV, Malhotra R, et al. Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation. 2011;124(13):1442–1451. doi:10.1161/CIRCULATIONAHA.111.024141 PubMed DOI PMC

Agostoni P, Apostolo A, Albert RK. Mechanisms of periodic breathing during exercise in patients with chronic heart failure. Chest. 2008;133(1):197–203. doi:10.1378/chest.07-1439 PubMed DOI

Balady Gary J, Arena Ross, Sietsema Kathy, et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation. 2010;122(2):191–225. doi:10.1161/CIR.0b013e3181e52e69 PubMed DOI

Olson TP, Snyder EM, Johnson BD. Exercise-disordered breathing in chronic heart failure. Exerc Sport Sci Rev. 2006;34(4):194–201. doi:10.1249/01.jes.0000240022.30373.a2 PubMed DOI

Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R. Exercise oscillatory breathing in diastolic heart failure: prevalence and prognostic insights. Eur Heart J. 2008;29(22):2751–2759. doi:10.1093/eurheartj/ehn437 PubMed DOI

Ponikowski P, Anker SD, Chua TP, et al. Oscillatory breathing patterns during wakefulness in patients with chronic heart failure: clinical implications and role of augmented peripheral chemosensitivity. Circulation. 1999;100(24):2418–2424. PubMed

Sun X-G, Hansen JE, Beshai JF, Wasserman K. Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol. 2010;55(17):1814–1823. doi:10.1016/j.jacc.2009.10.075 PubMed DOI

Guazzi M, Arena R, Pellegrino M, et al. Prevalence and characterization of exercise oscillatory ventilation in apparently healthy individuals at variable risk for cardiovascular disease: A subanalysis of the EURO-EX trial. Eur J Prev Cardiol. 2016;23(3):328–334. doi:10.1177/2047487315580445 PubMed DOI

Corrà U, Pistono M, Mezzani A, et al. Sleep and Exertional Periodic Breathing in Chronic Heart Failure. Circulation. 2006;113(1):44–50. doi:10.1161/CIRCULATIONAHA.105.543173 PubMed DOI

Roche F, Maudoux D, Jamon Y, Barthelemy J-C. Monitoring of ventilation during the early part of cardiopulmonary exercise testing: the first step to detect central sleep apnoea in chronic heart failure. Sleep Med. 2008;9(4):411–417. doi:10.1016/j.sleep.2007.06.012 PubMed DOI

Wolk R, Kara T, Somers VK. Sleep-Disordered Breathing and Cardiovascular Disease. Circulation. 2003;108(1):9–12. doi:10.1161/01.CIR.0000072346.56728.E4 PubMed DOI

Bradley TD, Floras JS. Sleep Apnea and Heart Failure Part II: Central Sleep Apnea. Circulation. 2003;107(13):1822–1826. doi:10.1161/01.CIR.0000061758.05044.64 PubMed DOI

Caples SM, Wolk R, Somers VK. Influence of cardiac function and failure on sleep-disordered breathing: evidence for a causative role. J Appl Physiol. 2005;99(6):2433–2439. doi:10.1152/japplphysiol.00676.2005 PubMed DOI

Eckert DJ, Jordan AS, Merchia P, Malhotra A. Central sleep apnea: Pathophysiology and treatment. Chest. 2007;131(2):595–607. doi:10.1378/chest.06.2287 PubMed DOI PMC

Olson LJ, Somers VK. Sleep apnea: implications for heart failure. Curr Heart Fail Rep. 2007;4(2):63–69. PubMed

Javaheri S Heart failure and sleep apnea: emphasis on practical therapeutic options. Clinics in chest medicine. 24(2):207–222. PubMed

Mansfield D, Kaye DM, Brunner La Rocca H, Solin P, Esler MD, Naughton MT. Raised sympathetic nerve activity in heart failure and central sleep apnea is due to heart failure severity. Circulation. 2003;107(10):1396–1400. PubMed

Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. American Journal of Respiratory and Critical Care Medicine. 1995;152(2):473–479. doi:10.1164/ajrccm.152.2.7633695 PubMed DOI

Khayat R, Abraham W, Patt B, et al. Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. J Card Fail. 2012;18(7):534–540. doi:10.1016/j.cardfail.2012.05.003 PubMed DOI PMC

Naughton MT, Bradley TD. Sleep apnea in congestive heart failure. Clin Chest Med. 1998;19(1):99–113. PubMed

Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–259. doi:10.1056/NEJMoa052256 PubMed DOI

Burkhoff D Mortality in heart failure with preserved ejection fraction: an unacceptably high rate. Eur Heart J. 2012;33(14):1718–1720. doi:10.1093/eurheartj/ehr339 PubMed DOI

Smith GL, Masoudi FA, Vaccarino V, Radford MJ, Krumholz HM. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline. J Am Coll Cardiol. 2003;41(9):1510–1518. PubMed

Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol. 2005;46(10):1883–1890. doi:10.1016/j.jacc.2005.07.051 PubMed DOI

Yan J, Gong S-J, Li L, et al. Combination of B-type natriuretic peptide and minute ventilation/carbon dioxide production slope improves risk stratification in patients with diastolic heart failure. Int J Cardiol. 2013;162(3):193–198. doi:10.1016/j.ijcard.2011.07.017 PubMed DOI

Shafiq A, Brawner CA, Aldred HA, et al. Prognostic value of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. The Henry Ford HospITal CardioPulmonary EXercise Testing (FIT-CPX) project. Am Heart J. 2016;174:167–172. doi:10.1016/j.ahj.2015.12.020 PubMed DOI PMC

Nadruz W, West E, Sengeløv M, et al. Prognostic Value of Cardiopulmonary Exercise Testing in Heart Failure With Reduced, Midrange, and Preserved Ejection Fraction. J Am Heart Assoc. 2017;6(11). doi:10.1161/JAHA.117.006000 PubMed DOI PMC

Butler J, Chomsky DB, Wilson JR. Pulmonary hypertension and exercise intolerance in patients with heart failure. J Am Coll Cardiol. 1999;34(6):1802–1806. PubMed

Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–1126. doi:10.1016/j.jacc.2008.11.051 PubMed DOI PMC

Rausch CM, Taylor AL, Ross H, Sillau S, Ivy DD. Ventilatory efficiency slope correlates with functional capacity, outcomes, and disease severity in pediatric patients with pulmonary hypertension,,. Int J Cardiol. 2013;169(6):445–448. doi:10.1016/j.ijcard.2013.10.012 PubMed DOI PMC

Faisal A, Webb KA, Guenette JA, et al. Effect of age-related ventilatory inefficiency on respiratory sensation during exercise. Respir Physiol Neurobiol. 2015;205:129–139. doi:10.1016/j.resp.2014.10.017 PubMed DOI

Matsumoto A, Itoh H, Eto Y, et al. End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve. J Am Coll Cardiol. 2000;36(1):242–249. PubMed

Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104(4):429–435. PubMed

O’Donnell DE, Elbehairy AF, Berton DC, Domnik NJ, Neder JA. Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases. Front Physiol. 2017;8. doi:10.3389/fphys.2017.00082 PubMed DOI PMC

Aguggini G, Clement MG, Widdicombe JG. Lung reflexes affecting the larynx in the pig, and the effect of pulmonary microembolism. Q J Exp Physiol. 1987;72(1):95–104. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...