The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI)
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
N305 1059 33
Polish Ministry of Science and Higher Education.
PubMed
31124067
PubMed Central
PMC6647384
DOI
10.1007/s11356-019-05221-y
PII: 10.1007/s11356-019-05221-y
Knihovny.cz E-resources
- Keywords
- Calcium oxide, Chromium contamination, Compost, Soil amendments, Zeolite,
- MeSH
- Chromium analysis MeSH
- Hordeum MeSH
- Composting methods MeSH
- Zea mays MeSH
- Soil Pollutants analysis MeSH
- Oxides MeSH
- Soil chemistry MeSH
- Environmental Restoration and Remediation methods MeSH
- Calcium Compounds MeSH
- Zeolites chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chromium MeSH
- chromium hexavalent ion MeSH Browser
- Soil Pollutants MeSH
- lime MeSH Browser
- Oxides MeSH
- Soil MeSH
- Calcium Compounds MeSH
- Zeolites MeSH
The effect of soil amendments, i.e., compost, zeolite, and calcium oxide, on the chemical properties of soil contaminated with Cr(III) and Cr(VI) and the uptake of selected heavy metals by spring barley (Hordeum vulgare L.) and maize (Zea mays L.) was determined in a pot experiment. The content of all investigated heavy metals in the tested plants varied significantly in response to the tested soil amendments and increasing concentrations of Cr(III) and Cr(VI). Compost, zeolite, and calcium oxide contributed to an increase in the average yield of the aerial parts of maize plants only in treatments contaminated with Cr(III). The concentrations of Cr, Zn, and Ni in the aerial parts of spring barley and maize were higher in treatments contaminated with Cr(III) than in treatments contaminated with Cr(VI). Calcium oxide induced a significant increase in soil pH relative to the control treatment. In treatments without soil amendments, the average Cr content of soil was higher in pots contaminated with Cr(VI). The concentrations of Zn and Cu in non-amended treatments were negatively correlated with increasing doses of Cr(III) and Cr(VI). Calcium oxide decreased the average content of Cr, Cu, and Ni in all experimental variants. Compost increased the average content of Zn in treatments contaminated with Cr(III) and Cr(IV) relative to non-amended soil.
See more in PubMed
Adejumo SA, Ogundiran MB, Togun AO. Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. J Environ Chem Eng. 2018;6(4):4809–4819. doi: 10.1016/j.jece.2018.07.027. DOI
Ahmad M, Lee SS, Yang JE, Rob HM, Lee YH, Ok YS. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf. 2012;79:225–231. doi: 10.1016/j.ecoenv.2012.01.003. PubMed DOI
Antoniadis V, Zanni AA, Levizou E, Shaheen SM, Dimirkou A, Bolan N, Rinklebe J. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. Chemosphere. 2018;195:291–300. doi: 10.1016/j.chemosphere.2017.12.069. PubMed DOI
Arfaeinia H, Dobaradaran S, Moradi M, Pasalari H, Mehrizi EA, Taghizadeh F, Esmaili A, Ansarizadeh M. The effect of land use configurations on concentration, spatial distribution, and ecological risk of heavy metals in coastal sediments of northern part along the Persian Gulf. Sci Total Environ. 2019;653:783–791. doi: 10.1016/j.scitotenv.2018.11.009. PubMed DOI
Cameselle C, Gouveia S. Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater. 2019;361:95–102. doi: 10.1016/j.jhazmat.2018.08.062. PubMed DOI
Cavell AJ. The colorimetric determination of phosphorous in plant materials. J Sci Food Agric. 1955;6:479–481. doi: 10.1002/jsfa.2740060814. DOI
Chen H, Dou J, Xu H. The effect of low-molecular-weight organic-acids (LMWOAs) on treatment of chromium-contaminated soils by compost-phytoremediation: kinetics of the chromium release and fractionation. J Environ Sci. 2018;70:45–53. doi: 10.1016/j.jes.2017.11.007. PubMed DOI
Chu Y, Liu S, Wang F, Bian H, Cai G. Electric conductance response on engineering properties of heavy metal polluted soils. J Environ Chem Eng. 2018;6(4):5552–5560. doi: 10.1016/j.jece.2018.08.046. DOI
Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Vassanda Coumar M, Kundu S, Patra AK. Influence of chromium contamination on carbon mineralization and enzymatic activities in vertisol. J Agric Res. 2017;6(1):91–96. doi: 10.1007/s40003-016-0242-6. DOI
Elouahli A, Zbair M, Anfar Z, Ahsaine HA, Khallok H, Choura R, Hatim Z. Apatitic tricalcium phosphate powder: high sorption capacity of hexavalent chromium removal. Surf Int. 2018;13:139–147.
Eyvazi B, Jamshidi-Zanjani A, Darban AK. Immobilization of hexavalent chromium in contaminated soil using nanomagnetic MnFe2O4. J Hazard Mater. 2019;365:813–819. doi: 10.1016/j.jhazmat.2018.11.041. PubMed DOI
Feng W, Wan Z, Daniels J, Li Z, Xiao G, Yu J, Xu D, Guo H, Zhang D, May EF, Li GK. Synthesis of high quality zeolites from coal fly ash: mobility of hazardous elements and environmental applications. J Clean Prod. 2018;202:390–400. doi: 10.1016/j.jclepro.2018.08.140. DOI
Goswami L, Mukhopadhyay R, Bhattacharya SS, Das P, Goswami R. Detoxification of chromium-rich tannery industry sludge by Eudrillus eugeniae: insight on compost quality fortification and microbial enrichment. Bioresour Technol. 2018;266:472–481. doi: 10.1016/j.biortech.2018.07.001. PubMed DOI
Gupta P, Kumar V, Usmani Z, Rani R, Chandra A. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Chemosphere. 2018;192:318–327. doi: 10.1016/j.chemosphere.2017.10.164. PubMed DOI
Hamid Y, Tang L, Yaseen M, Hussain B, Zehra A, Aziz MZ, He Z, Yang X. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere. 2019;214:259–268. doi: 10.1016/j.chemosphere.2018.09.113. PubMed DOI
He X, Zhong P, Qiu X. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide. Chemosphere. 2018;210:1157–1166. doi: 10.1016/j.chemosphere.2018.07.048. PubMed DOI
He D, Cui J, Gao M, Wang W, Zhou J, Yang J, Wang J, Li Y, Jiang C, Peng Y. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Sci Total Environ. 2019;654:1364–1371. doi: 10.1016/j.scitotenv.2018.11.059. PubMed DOI
Hedayatkhaha A, Cretoiud MS, Emtiazic G, Stala LJ, Bolhuis H. Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. J Environ Manag. 2018;227:313–320. doi: 10.1016/j.jenvman.2018.09.011. PubMed DOI
Hseu ZY, Zehetner F, Fujii K, Watanabe T, Nakao A. Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma. 2018;327:97–106. doi: 10.1016/j.geoderma.2018.04.030. DOI
Hu J, Meng DL, Liu HD, Liang YL, Yin HQ, Liu HW. Response of soil fungal community to long-term chromium contamination. Trans Nonferrous Metals Soc China. 2018;28(9):1838–1846. doi: 10.1016/S1003-6326(18)64828-9. DOI
Huang HL, Wei YJ. Speciation of chromium compounds from humic acid-zeolite Y to an ionic liquid during extraction. Chemosphere. 2018;194:390–395. doi: 10.1016/j.chemosphere.2017.11.160. PubMed DOI
Jobby R, Jha P, Yadav AK, Desai N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 2018;207:255–266. doi: 10.1016/j.chemosphere.2018.05.050. PubMed DOI
Kintl A, Elbl J, Losak T, Vaverková MD, Nedelnik J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10(10):3367. doi: 10.3390/su10103367. DOI
Kjeldahl JZ. A new method for the determination of nitrogen in organic matter. Anal Chem. 1983;22:366. doi: 10.1007/BF01338151. DOI
Krzyżaniak M, Stolarski MJ, Warminski K. Life cycle assessment of poplar production.: environmental impact of different soil enrichment methods. J Clean Prod. 2019;206:785–796. doi: 10.1016/j.jclepro.2018.09.180. DOI
Kust G, Andreeva O, Lobkovskiy V, Telnova N. Uncertainties and policy challenges in implementing Land Degradation Neutrality in Russia. Environ Sci Pol. 2018;89:348–356. doi: 10.1016/j.envsci.2018.08.010. DOI
Lee CP, Hsu PY, Su CC. Increased prevalence of Sjogren’s syndrome in where soils contain high levels of chromium. Sci Total Environ. 2019;657:1121–1126. doi: 10.1016/j.scitotenv.2018.12.122. PubMed DOI
Li X, Wang X, Chen Y, Yang X, Cui Z. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol Environ Saf. 2019;168:1–8. doi: 10.1016/j.ecoenv.2018.10.012. PubMed DOI
Lilli MA, Nikolaidis NP, Karatzas GP, Kalogerakis N. Identifying the controlling mechanism of geogenic origin chromium release in soils. J Hazard Mater. 2019;366:169–176. doi: 10.1016/j.jhazmat.2018.11.090. PubMed DOI
Liu HL, Zhoua J, Lia M, Hua YM, Liud X, Zhou J. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J Hazard Mater. 2019;362:9–16. doi: 10.1016/j.jhazmat.2018.09.032. PubMed DOI
Majewski G, Kleniewska M, Brandyk A. Seasonal variation of particulate matter mass concentration and content of metals. Pol J Environ Stud. 2011;20(2):417–427.
Patra DK, Pradhan C, Patra HK. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr+6) on soil and its bioaccumulation: perspectives on phytoremediation potential and phytostabilisation of chromium toxicity. Chemosphere. 2018;193:793–799. doi: 10.1016/j.chemosphere.2017.11.062. PubMed DOI
Paul D, Choudhary B, Gupta T, Jos MT. Spatial distribution and the extent of heavy metal and hexavalent chromium pollution in agricultural soils from Jajmau, India. Environ Earth Sci. 2015;73:3565–3577. doi: 10.1007/s12665-014-3642-6. DOI
Radziemska M, Mazur Z (2016) Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. Journal of Ecological Engineering 17(3):125–133. 10.12911/22998993/63336
Radziemska M, Gusiatin ZM, Bilgin A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol Eng. 2017;102:490–500. doi: 10.1016/j.ecoleng.2017.02.028. DOI
Radziemska M, Vaverková MD, Baryła A. Phytostabilization – management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health. 2017;14(9):958. doi: 10.3390/ijerph14090958. PubMed DOI PMC
Raptis S, Gasparatos D, Economou-Eliopoulos M, Petridis A. Chromium uptake by lettuce as affected by the application of organic matter and Cr(VI)-irrigation water: implications to the land use and water management. Chemosphere. 2018;210:597–606. doi: 10.1016/j.chemosphere.2018.07.046. PubMed DOI
Saleem M, Asghar HN, Khan MY, Zahir ZA. Gibberellic acid in combination with press mud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Environ Sci Pollut Res. 2015;22:10610–10617. doi: 10.1007/s11356-015-4275-3. PubMed DOI
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Duma C, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 2017;178:513–533. doi: 10.1016/j.chemosphere.2017.03.074. PubMed DOI
Sinha V, Pakshirajan K, Chaturvedi R. Chromium tolerance, bioaccumulation and localization in plants: an overview. J Environ Manag. 2018;206:715–730. doi: 10.1016/j.jenvman.2017.10.033. PubMed DOI
Szyszko E. Instrumental analytical method. Warsaw: PZWL; 1982. p. 623.
US Environmental Protection Agency (2007) Method 3051A, Microwave assisted acid digestion of sediments, sludges, soils and oils. Washington, DC
Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Wyszkowski M, Radziemska M. The effect of chromium content in soil on the concentration of some mineral elements in plants. Fresenius Environ Bull. 2009;18(7):1039–1045.
Wyszkowski M, Radziemska M. Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013;244:1619–1632. doi: 10.1007/s11270-013-1619-9. PubMed DOI PMC
Yin Y, Gu J, Wang X, Song W, Zhang K, Zhang X, Lu C, Liu J. Effects of chromium (III) on enzyme activities and bacterial communities during swine manure composting. Bioresour Technol. 2018;243:693–699. doi: 10.1016/j.biortech.2017.06.169. PubMed DOI
Μolla A, Ioannou Z, Mollas S, Skoufogianni E, Dimirkou A. Removal of chromium from soils cultivated with maize (Zea mays) after the addition of natural minerals as soil amendments. Bull Environ Contam Toxicol. 2017;98:347–352. doi: 10.1007/s00128-017-2044-3. PubMed DOI