Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications

. 2019 Jun 19 ; 11 (6) : . [epub] 20190619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31248100

Grantová podpora
LM2015064 ERIC Ministry of Education, Youth and Sports of the Czech Republic
POLYMAT LO1507 National Sustainability Program I
18-07983S Czech Science Foundation
DAAD-19-09 Academy of Sciences of the Czech Republic
17-09998S Czech Science Foundation

In the last half-century, the development of biodegradable polyesters for biomedical applications has advanced significantly. Biodegradable polyester materials containing external stimuli-sensitive linkages are favored in the development of therapeutic devices for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These selectively biodegradable polyesters degrade after particular external stimulus (e.g., pH or redox potential change or the presence of certain enzymes). This review outlines the current development of biodegradable synthetic polyesters materials able to undergo hydrolytic or enzymatic degradation for various biomedical applications, including tissue engineering, temporary implants, wound healing and drug delivery.

Zobrazit více v PubMed

Sivaram S.J.R. Wallace hume carothers and the birth of rational polymer synthesis. Resonance. 2017;22:339–353. doi: 10.1007/s12045-017-0474-1. DOI

Kumar M.N.V.R. Handbook of Polyester Drug Delivery Systems. Pan Stanford Publishing; Singapore: 2017.

Albertsson A.-C., Varma I.K. Biopolymers Online. Wiley-VCH; Weinheim, Germany: 2005. Aliphatic polyesters.

Ding D., Pan X., Zhang Z., Li N., Zhu J., Zhu X. A degradable copolymer of 2-methylene-1,3-dioxepane and vinyl acetate by photo-induced cobalt-mediated radical polymerization. Polym. Chem. 2016;7:5258–5264. doi: 10.1039/C6PY01061J. DOI

Sun L.F., Zhuo R.X., Liu Z.L. Synthesis and enzymatic degradation of 2-methylene-1,3-dioxepane and methyl acrylate copolymers. J. Polym. Sci. A Polym. Chem. 2003;41:2898–2904. doi: 10.1002/pola.10868. DOI

Edlund U., Albertsson A.C. Polyesters based on diacid monomers. Adv. Drug Deliv. Rev. 2003;55:585–609. doi: 10.1016/S0169-409X(03)00036-X. PubMed DOI

Duda A., Penczek S. Biopolymers. Wiley-VCH; Weinheim, Germany: 2005. Mechanism of aliphatic polyester formation.

Jäger A., Gromadzki D., Jäger E., Giacomelli F.C., Kozlowska A., Kobera L., Brus J., Říhová B., El Fray M., Ulbrich K., et al. Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter. 2012;8:4343–4354. doi: 10.1039/c2sm07247e. DOI

Jäger E., Jäger A., Etrych T., Giacomelli F.C., Chytil P., Jigounov A., Putaux J.-L., Říhová B., Ulbrich K., Štěpánek P. Self-assembly of biodegradable copolyester and reactive hpma-based polymers into nanoparticles as an alternative stealth drug delivery system. Soft Matter. 2012;8:9563–9575. doi: 10.1039/c2sm26150b. DOI

Albertsson A.C., Varma I.K. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2002. Aliphatic polyesters: Synthesis, properties and applications.

Carothers W.H. Polymers and polyfunctionality. Trans. Faraday Soc. 1936;32:39–49. doi: 10.1039/tf9363200039. DOI

Carothers W.H. Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. J. Am. Chem. Soc. 1929;51:2548–2559. doi: 10.1021/ja01383a041. DOI

Bikiaris D.N., Papageorgiou G.Z., Papadimitriou S.A., Karavas E., Avgoustakis K. Novel biodegradable polyester poly(propylene succinate): Synthesis and application in the preparation of solid dispersions and nanoparticles of a water-soluble drug. AAPS Pharmscitech. 2009;10:138–146. doi: 10.1208/s12249-008-9184-z. PubMed DOI PMC

Bikiaris D., Karavelidis V., Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene hcl loaded nanoparticles. Molecules. 2009;14:2410–2430. doi: 10.3390/molecules14072410. PubMed DOI PMC

Xu J., Guo B.-H. Microbial succinic acid, its polymer poly(butylene succinate), and applications. In: Chen G.G.-Q., editor. Plastics from Bacteria: Natural Functions and Applications. Springer; Berlin/Heidelberg, Germany: 2010. pp. 347–388.

Yang J., Zhang S., Liu X., Cao A. A study on biodegradable aliphatic poly(tetramethylene succinate): The catalyst dependences of polyester syntheses and their thermal stabilities. Polym. Degrad. Stab. 2003;81:1–7. doi: 10.1016/S0141-3910(03)00056-9. DOI

Luo S., Li F., Yu J., Cao A. Synthesis of poly(butylene succinate-co-butylene terephthalate) (pbst) copolyesters with high molecular weights via direct esterification and polycondensation. J. Appl. Polym. Sci. 2010;115:2203–2211. doi: 10.1002/app.31346. DOI

Jacquel N., Freyermouth F., Fenouillot F., Rousseau A., Pascault J.P., Fuertes P., Saint-Loup R. Synthesis and properties of poly(butylene succinate): Efficiency of different transesterification catalysts. J. Polym. Sci. A Polym. Chem. 2011;49:5301–5312. doi: 10.1002/pola.25009. DOI

Bikiaris D.N., Achilias D.S. Synthesis of poly(alkylene succinate) biodegradable polyesters i. Mathematical modelling of the esterification reaction. Polymer. 2006;47:4851–4860. doi: 10.1016/j.polymer.2006.04.044. DOI

Bikiaris D.N., Achilias D.S. Synthesis of poly(alkylene succinate) biodegradable polyesters, part ii: Mathematical modelling of the polycondensation reaction. Polymer. 2008;49:3677–3685. doi: 10.1016/j.polymer.2008.06.026. DOI

Gallardo A., San Román J., Dijkstra P.J., Feijen J. Random polyester transesterification:  Prediction of molecular weight and mw distribution. Macromolecules. 1998;31:7187–7194. doi: 10.1021/ma980778t. DOI

Jérôme C., Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Deliv. Rev. 2008;60:1056–1076. doi: 10.1016/j.addr.2008.02.008. PubMed DOI

Jérôme R., Lecomte P. 4-new developments in the synthesis of aliphatic polyesters by ring-opening polymerisation. In: Smith R., editor. Biodegradable Polymers for Industrial Applications. Woodhead Publishing; Cambridge, UK: 2005. pp. 77–106.

Lecomte P., Jérôme C. Recent developments in ring-opening polymerization of lactones. In: Rieger B., Künkel A., Coates G.W., Reichardt R., Dinjus E., Zevaco T.A., editors. Synthetic Biodegradable Polymers. Springer; Berlin/Heidelberg, Germany: 2012. pp. 173–217.

Penczek S., Cypryk M., Duda A., Kubisa P., Słomkowski S. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 2007;32:247–282. doi: 10.1016/j.progpolymsci.2007.01.002. DOI

Albertsson A.-C., Varma I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4:1466–1486. doi: 10.1021/bm034247a. PubMed DOI

Jain R., Shah N.H., Malick A.W., Rhodes C.T. Controlled drug delivery by biodegradable poly(ester) devices: Different preparative approaches. Drug Dev. Ind. Pharm. 1998;24:703–727. doi: 10.3109/03639049809082719. PubMed DOI

Dash T.K., Konkimalla V.B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. Off. J. Controll. Release Soc. 2012;158:15–33. doi: 10.1016/j.jconrel.2011.09.064. PubMed DOI

Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Garlotta D. A literature review of poly(lactic acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI

Raquez J.-M., Habibi Y., Murariu M., Dubois P. Polylactide (pla)-based nanocomposites. Prog. Polym. Sci. 2013;38:1504–1542. doi: 10.1016/j.progpolymsci.2013.05.014. DOI

Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Préat V. Plga-based nanoparticles: An overview of biomedical applications. J. Controll. Release. 2012;161:505–522. doi: 10.1016/j.jconrel.2012.01.043. PubMed DOI

Idris S.B., Dånmark S., Finne-Wistrand A., Arvidson K., Albertsson A.-C., Bolstad A.I., Mustafa K. Biocompatibility of polyester scaffolds with fibroblasts and osteoblast-like cells for bone tissue engineering. J. Bioact. Compat. Polym. 2010;25:567–583. doi: 10.1177/0883911510381368. DOI

Anderson J.M., Shive M.S. Biodegradation and biocompatibility of pla and plga microspheres. Adv. Drug Deliv. Rev. 1997;28:5–24. doi: 10.1016/S0169-409X(97)00048-3. PubMed DOI

Pamula E., Dobrzynski P., Szot B., Kretek M., Krawciow J., Plytycz B., Chadzinska M. Cytocompatibility of aliphatic polyesters—In vitro study on fibroblasts and macrophages. J. Biomed. Mater. Res. Part A. 2008;87:524–535. doi: 10.1002/jbm.a.31802. PubMed DOI

Knight P.T., Kirk J.T., Anderson J.M., Mather P.T. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes. J. Biomed. Mater. Res. Part A. 2010;94:333–343. doi: 10.1002/jbm.a.32806. PubMed DOI

Chandra R., Rustgi R. Biodegradable polymers. Prog. Polym. Sci. 1998;23:1273–1335. doi: 10.1016/S0079-6700(97)00039-7. DOI

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Vert M., Li S.M., Spenlehauer G., Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 1992;3:432–446. doi: 10.1007/BF00701240. DOI

Sokolsky-Papkov M., Agashi K., Olaye A., Shakesheff K., Domb A.J. Polymer carriers for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007;59:187–206. doi: 10.1016/j.addr.2007.04.001. PubMed DOI

Kretlow J.D., Klouda L., Mikos A.G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007;59:263–273. doi: 10.1016/j.addr.2007.03.013. PubMed DOI

Pan Z., Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2:366–377. doi: 10.1098/rsfs.2011.0123. PubMed DOI PMC

Bartus C., William Hanke C., Daro-Kaftan E. A decade of experience with injectable poly-l-lactic acid: A focus on safety. Off. Publ. Am. Soc. Dermatol. Surg. 2013;39:698–705. doi: 10.1111/dsu.12128. PubMed DOI

Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003;55:329–347. doi: 10.1016/S0169-409X(02)00228-4. PubMed DOI

Bakhru S.H., Furtado S., Morello A.P., Mathiowitz E. Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 2013;65:811–821. doi: 10.1016/j.addr.2013.04.006. PubMed DOI

Vasir J.K., Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv.Rev. 2007;59:718–728. doi: 10.1016/j.addr.2007.06.003. PubMed DOI PMC

Acharya S., Sahoo S.K. Plga nanoparticles containing various anticancer agents and tumour delivery by epr effect. Adv. Drug Deliv.Rev. 2011;63:170–183. doi: 10.1016/j.addr.2010.10.008. PubMed DOI

Li H., Chang J., Cao A., Wang J. In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial. Macromol. Biosci. 2005;5:433–440. doi: 10.1002/mabi.200400183. PubMed DOI

Yang J., Tian W., Li Q., Li Y., Cao A. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks:  Ii. Enzymatic biodegradation and in vitro biocompatibility assay. Biomacromolecules. 2004;5:2258–2268. doi: 10.1021/bm049705+. PubMed DOI

Bechthold I., Bretz K., Kabasci S., Kopitzky R., Springer A. Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 2008;31:647–654. doi: 10.1002/ceat.200800063. DOI

Jäger E., Donato R.K., Perchacz M., Jäger A., Surman F., Höcherl A., Konefał R., Donato K.Z., Venturini C.G., Bergamo V.Z., et al. Biocompatible succinic acid-based polyesters for potential biomedical applications: Fungal biofilm inhibition and mesenchymal stem cell growth. RSC Adv. 2015;5:85756–85766. doi: 10.1039/C5RA15858C. DOI

Jäger A., Jäger E., Giacomelli F.C., Nallet F., Steinhart M., Putaux J.-L., Konefał R., Spěváček J., Ulbrich K., Štěpánek P. Structural changes on polymeric nanoparticles induced by hydrophobic drug entrapment. Physicochem. Eng. Asp. 2018;538:238–249. doi: 10.1016/j.colsurfa.2017.10.059. DOI

Jäger A., Jäger E., Syrová Z., Mazel T., Kováčik L., Raška I., Höcherl A., Kučka J., Konefal R., Humajova J., et al. Poly(ethylene oxide monomethyl ether)-block-poly(propylene succinate) nanoparticles: Synthesis and characterization, enzymatic and cellular degradation, micellar solubilization of paclitaxel, and in vitro and in vivo evaluation. Biomacromolecules. 2018;19:2443–2458. doi: 10.1021/acs.biomac.8b00048. PubMed DOI

Van Dijkhuizen-Radersma R., Roosma J.R., Kaim P., Métairie S., Péters F.L.A.M.A., de Wijn J., Zijlstra P.G., de Groot K., Bezemer J.M. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. J. Biomed. Mater. Res. 2003;67:1294–1304. doi: 10.1002/jbm.a.20044. PubMed DOI

Van Dijkhuizen-Radersma R., Roosma J.R., Sohier J., Péters F.L.A.M.A., van den Doel M., van Blitterswijk C.A., de Groot K., Bezemer J.M. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications: An in vivo evaluation. J. Biomed. Mater. Res. 2004;71:118–127. doi: 10.1002/jbm.a.30136. PubMed DOI

Wang L.-C., Chen J.-W., Liu H.-L., Chen Z.-Q., Zhang Y., Wang C.-Y., Feng Z.-G. Synthesis and evaluation of biodegradable segmented multiblock poly(ether ester) copolymers for biomaterial applications. Polym. Int. 2004;53:2145–2154. doi: 10.1002/pi.1645. DOI

Lindström A., Albertsson A.-C., Hakkarainen M. Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate) Polym. Degrad. Stab. 2004;83:487–493. doi: 10.1016/j.polymdegradstab.2003.07.001. DOI

Bremer J., Osmundsen H. Chapter 5 fatty acid oxidation and its regulation. In: Numa S., editor. New Comprehensive Biochemistry. Volume 7. Elsevier; Amsterdam, The Netherlands: 1984. pp. 113–154.

Domb A.J., Maniar M. Absorbable biopolymers derived from dimer fatty acids. J. Polym. Sci. A Polym. Chem. 1993;31:1275–1285. doi: 10.1002/pola.1993.080310523. DOI

Jain J.P., Sokolsky M., Kumar N., Domb A.J. Fatty acid based biodegradable polymer. Polym. Rev. 2008;48:156–191. doi: 10.1080/15583720701834232. DOI

Jäger E., Jäger A., Chytil P., Etrych T., Říhová B., Giacomelli F.C., Štěpánek P., Ulbrich K. Combination chemotherapy using core-shell nanoparticles through the self-assembly of hpma-based copolymers and degradable polyester. J. Controll. Release. 2013;165:153–161. doi: 10.1016/j.jconrel.2012.11.009. PubMed DOI

Burkersroda F.v., Schedl L., Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23:4221–4231. doi: 10.1016/S0142-9612(02)00170-9. PubMed DOI

Ge H., Hu Y., Yang S., Jiang X., Yang C. Preparation, characterization, and drug release behaviors of drug-loaded ε-caprolactone/l-lactide copolymer nanoparticles. J. Appl. Polym. Sci. 2000;75:874–882. doi: 10.1002/(SICI)1097-4628(20000214)75:7<874::AID-APP3>3.0.CO;2-G. DOI

Liu Q., Cai C., Dong C.-M. Poly(l-lactide)-b-poly(ethylene oxide) copolymers with different arms: Hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. J. Biomed. Mater. Res. 2009;88:990–999. doi: 10.1002/jbm.a.31945. PubMed DOI

Karavelidis V., Karavas E., Giliopoulos D., Papadimitriou S., Bikiaris D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int. J. Nanomed. 2009;6:3021–3032. PubMed PMC

Kang Moo H., Hyun Su M., Sang Cheon L., Hong Jae L., Sungwon K., Kinam P. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J. Controll. Release. 2008;126:122–129. doi: 10.1016/j.jconrel.2007.11.008. PubMed DOI PMC

Mahmud A., Patel S., Molavi O., Choi P., Samuel J., Lavasanifar A. Self-associating poly(ethylene oxide)-b-poly(α-cholesteryl carboxylate-ε-caprolactone) block copolymer for the solubilization of stat-3 inhibitor cucurbitacin i. Biomacromolecules. 2009;10:471–478. doi: 10.1021/bm800846a. PubMed DOI

Patel S.K., Lavasanifar A., Choi P. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of peo-b-pcl with increasing pcl content for two hydrophobic cucurbitacin drugs. Biomacromolecules. 2009;10:2584–2591. doi: 10.1021/bm900512h. PubMed DOI

Washington K.E., Kularatne R.N., Karmegam V., Biewer M.C., Stefan M.C. Recent advances in aliphatic polyesters for drug delivery applications. WIREs Nanomed. Nanobiotechnol. 2017;9:e1446. doi: 10.1002/wnan.1446. PubMed DOI

Ulbrich K., Šubr V.R. Polymeric anticancer drugs with ph-controlled activation. Adv. Drug Deliv. Rev. 2004;56:1023–1050. doi: 10.1016/j.addr.2003.10.040. PubMed DOI

Qiao Z.-Y., Qiao S.-L., Fan G., Fan Y.-S., Chen Y., Wang H. One-pot synthesis of ph-sensitive poly(rgd-co-β-amino ester)s for targeted intracellular drug delivery. Polym. Chem. 2014;5:844–853. doi: 10.1039/C3PY01117H. DOI

Yi Y., Lin G., Chen S., Liu J., Zhang H., Mi P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Mater. Sci. Eng. C. 2018;83:218–232. doi: 10.1016/j.msec.2017.10.004. PubMed DOI

Xiong X.-B., Mahmud A., Uludağ H., Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm. Res. 2008;25:2555–2566. doi: 10.1007/s11095-008-9673-5. PubMed DOI

Xiong X.-B., Ma Z., Lai R., Lavasanifar A. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials. 2010;31:757–768. doi: 10.1016/j.biomaterials.2009.09.080. PubMed DOI

Sawant R.M., Hurley J.P., Salmaso S., Kale A., Tolcheva E., Levchenko T.S., Torchilin V.P. “Smart” drug delivery systems:  Double-targeted ph-responsive pharmaceutical nanocarriers. Bioconj. Chem. 2006;17:943–949. doi: 10.1021/bc060080h. PubMed DOI PMC

Bae Y., Nishiyama N., Fukushima S., Koyama H., Yasuhiro M., Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced In Vivo antitumor efficacy. Bioconj. Chem. 2005;16:122–130. doi: 10.1021/bc0498166. PubMed DOI

Almutairi A., Guillaudeu S.J., Berezin M.Y., Achilefu S., Fréchet J.M.J. Biodegradable ph-sensing dendritic nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J. Am. Chem. Soc. 2008;130:444–445. doi: 10.1021/ja078147e. PubMed DOI

Pang Y., Liu J., Su Y., Wu J., Zhu L., Zhu X., Yan D., Zhu B. Design and synthesis of thermo-responsive hyperbranched poly(amine-ester)s as acid-sensitive drug carriers. Polym. Chem. 2011;2:1661–1670. doi: 10.1039/c1py00053e. DOI

Honglawan A., Ni H., Weissman D., Yang S. Synthesis of random copolymer based ph-responsive nanoparticles as drug carriers for cancer therapeutics. Polym. Chem. 2013;4:3667–3675. doi: 10.1039/c3py00390f. DOI

Gillies E.R., Fréchet J.M.J. Ph-responsive copolymer assemblies for controlled release of doxorubicin. Bioconj. Chem. 2005;16:361–368. doi: 10.1021/bc049851c. PubMed DOI

Gillies E.R., Goodwin A.P., Fréchet J.M.J. Acetals as ph-sensitive linkages for drug delivery. Bioconj. Chem. 2004;15:1254–1263. doi: 10.1021/bc049853x. PubMed DOI

Heller J. Controlled drug release from poly(ortho esters) J. Controll. Release. 1985;446:51–66. doi: 10.1111/j.1749-6632.1985.tb18390.x. PubMed DOI

Tang R., Palumbo R.N., Ji W., Wang C. Poly(ortho ester amides): Acid-labile temperature-responsive copolymers for potential biomedical applications. Biomacromolecules. 2009;10:722–727. doi: 10.1021/bm9000475. PubMed DOI PMC

Srinophakun T., Boonmee J. Preliminary study of conformation and drug release mechanism of doxorubicin-conjugated glycol chitosan, via cis-aconityl linkage, by molecular modeling. Int. J. Mol. Sci. 2011;12:1672. doi: 10.3390/ijms12031672. PubMed DOI PMC

Yoo H.S., Lee E.A., Park T.G. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Controll. Release. 2002;82:17–27. doi: 10.1016/S0168-3659(02)00088-3. PubMed DOI

Heffernan M.J., Murthy N. Polyketal nanoparticles:  A new ph-sensitive biodegradable drug delivery vehicle. Bioconj. Chem. 2005;16:1340–1342. doi: 10.1021/bc050176w. PubMed DOI

Heller J., Barr J. Poly(ortho esters)from concept to reality. Biomacromolecules. 2004;5:1625–1632. doi: 10.1021/bm040049n. PubMed DOI

Van Den Mooter G., Maris B., Samyn C., Augustijns P., Kinget R. Use of azo polymers for colon-specific drug delivery. J. Pharm. Sci. 1997;86:1321–1327. doi: 10.1021/js9702630. PubMed DOI

Mutlu H., Geiselhart C.M., Barner-Kowollik C. Untapped potential for debonding on demand: The wonderful world of azo-compounds. Mater. Horiz. 2018;5:162–183. doi: 10.1039/C7MH00920H. DOI

Coelho P.J., Castro M.C.R., Fernandes S.S.M., Fonseca A.M.C., Raposo M.M.M. Enhancement of the photochromic switching speed of bithiophene azo dyes. Tetrahedron Lett. 2012;53:4502–4506. doi: 10.1016/j.tetlet.2012.05.166. DOI

Brown J.P. Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl. Environ. Microbiol. 1981;41:1283–1286. PubMed PMC

Eom T., Yoo W., Kim S., Khan A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials. 2018;185:333–347. doi: 10.1016/j.biomaterials.2018.09.020. PubMed DOI

Samyn C., Kalala W., Van den Mooter G., Kinget R. Synthesis and in vitro biodegradation of poly(ether-ester) azo polymers designed for colon targeting. Int. J. Pharm. 1995;121:211–216. doi: 10.1016/0378-5173(95)00023-C. DOI

Lu L., Chen G., Qiu Y., Li M., Liu D., Hu D., Gu X., Xiao Z.J.S.B. Nanoparticle-based oral delivery systems for colon targeting: Principles and design strategies. Sci. Bull. 2016;61:670–681. doi: 10.1007/s11434-016-1056-4. DOI

Rajpurohit H., Sharma P., Sharma S., Bhandari A. Polymers for colon targeted drug delivery. Indian J. Pharm. Sci. 2010;72:689–696. doi: 10.4103/0250-474X.84576. PubMed DOI PMC

Balendiran G.K., Dabur R., Fraser D. The role of glutathione in cancer. Cell Biochem. Funct. 2004;22:343–352. doi: 10.1002/cbf.1149. PubMed DOI

Quinn J.F., Whittaker M.R., Davis T.P. Glutathione responsive polymers and their application in drug delivery systems. Polym. Chem. 2017;8:97–126. doi: 10.1039/C6PY01365A. DOI

Ling X., Tu J., Wang J., Shajii A., Kong N., Feng C., Zhang Y., Yu M., Xie T., Bharwani Z., et al. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano. 2019;13:357–370. doi: 10.1021/acsnano.8b06400. PubMed DOI PMC

Song N., Liu W., Tu Q., Liu R., Zhang Y., Wang J. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surfaces B Biointerfaces. 2011;87:454–463. doi: 10.1016/j.colsurfb.2011.06.009. PubMed DOI

Yang Q., Tan L., He C., Liu B., Xu Y., Zhu Z., Shao Z., Gong B., Shen Y.-M. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomat. 2015;17:193–200. doi: 10.1016/j.actbio.2015.01.044. PubMed DOI

Son S., Namgung R., Kim J., Singha K., Kim W.J. Bioreducible polymers for gene silencing and delivery. Acc. Chem. Res. 2012;45:1100–1112. doi: 10.1021/ar200248u. PubMed DOI

Bauhuber S., Hozsa C., Breunig M., Göpferich A. Delivery of nucleic acids via disulfide-based carrier systems. Adv. Mater. 2009;21:3286–3306. doi: 10.1002/adma.200802453. PubMed DOI

Liu H., Wang H., Yang W., Cheng Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J. Am. Chem. Soc. 2012;134:17680–17687. doi: 10.1021/ja307290j. PubMed DOI

Song L., Ding A.-X., Zhang K.-X., Gong B., Lu Z.-L., He L. Degradable polyesters via ring-opening polymerization of functional valerolactones for efficient gene delivery. Org. Biomol. Chem. 2017;15:6567–6574. doi: 10.1039/C7OB00822H. PubMed DOI

Sies H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 1999;27:916–921. doi: 10.1016/S0891-5849(99)00177-X. PubMed DOI

Zhu W., Wang Y., Cai X., Zha G., Luo Q., Sun R., Li X., Shen Z. Reduction-triggered release of paclitaxel from in situ formed biodegradable core-cross-linked micelles. J. Mater. Chem. B. 2015;3:3024–3031. doi: 10.1039/C4TB01834F. PubMed DOI

Yameen B., Vilos C., Choi W.I., Whyte A., Huang J., Pollit L., Farokhzad O.C. Drug delivery nanocarriers from a fully degradable peg-conjugated polyester with a reduction-responsive backbone. Chem. Eur. J. 2015;21:11325–11329. doi: 10.1002/chem.201502233. PubMed DOI

Vo C.D., Kilcher G., Tirelli N. Polymers and sulfur: What are organic polysulfides good for? Preparative strategies and biological applications. Macromol. Rapid Commun. 2009;30:299–315. doi: 10.1002/marc.200800740. PubMed DOI

Song C.-C., Du F.-S., Li Z.-C. Oxidation-responsive polymers for biomedical applications. J. Mater. Chem. B. 2014;2:3413–3426. doi: 10.1039/C3TB21725F. PubMed DOI

Napoli A., Valentini M., Tirelli N., Müller M., Hubbell J.A. Oxidation-responsive polymeric vesicles. Nat. Mater. 2004;3:183–189. doi: 10.1038/nmat1081. PubMed DOI

Rehor A., Tirelli N., Hubbell J.A. A new living emulsion polymerization mechanism:  Episulfide anionic polymerization. Macromolecules. 2002;35:8688–8693. doi: 10.1021/ma0211378. DOI

Allen B.L., Johnson J.D., Walker J.P. Encapsulation and enzyme-mediated release of molecular cargo in polysulfide nanoparticles. ACS Nano. 2011;5:5263–5272. doi: 10.1021/nn201477y. PubMed DOI

Hirosue S., Kourtis I.C., van der Vlies A.J., Hubbell J.A., Swartz M.A. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and t cell activation. Vaccine. 2010;28:7897–7906. doi: 10.1016/j.vaccine.2010.09.077. PubMed DOI

Gupta M.K., Meyer T.A., Nelson C.E., Duvall C.L. Poly(ps-b-dma) micelles for reactive oxygen species triggered drug release. J. Controll. Release. 2012;162:591–598. doi: 10.1016/j.jconrel.2012.07.042. PubMed DOI PMC

Poole K.M., Nelson C.E., Joshi R.V., Martin J.R., Gupta M.K., Haws S.C., Kavanaugh T.E., Skala M.C., Duvall C.L. Ros-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials. 2015;41:166–175. doi: 10.1016/j.biomaterials.2014.11.016. PubMed DOI PMC

Zhang J., Tokatlian T., Zhong J., Ng Q.K.T., Patterson M., Lowry W.E., Carmichael S.T., Segura T. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv. Mater. 2011;23:5098–5103. doi: 10.1002/adma.201103349. PubMed DOI PMC

Kim K., Lee C.-S., Na K. Light-controlled reactive oxygen species (ros)-producible polymeric micelles with simultaneous drug-release triggering and endo/lysosomal escape. Chem. Commun. 2016;52:2839–2842. doi: 10.1039/C5CC09239F. PubMed DOI

Caucheteux S.M., Mitchell J.P., Ivory M.O., Hirosue S., Hakobyan S., Dolton G., Ladell K., Miners K., Price D.A., Kan-Mitchell J., et al. Polypropylene sulfide nanoparticle p24 vaccine promotes dendritic cell-mediated specific immune responses against hiv-1. J. Investig. Dermatol. 2016;136:1172–1181. doi: 10.1016/j.jid.2016.01.033. PubMed DOI

Cao W., Wang L., Xu H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today. 2015;10:717–736. doi: 10.1016/j.nantod.2015.11.004. DOI

Ma N., Li Y., Xu H., Wang Z., Zhang X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010;132:442–443. doi: 10.1021/ja908124g. PubMed DOI

Han P., Li S., Cao W., Li Y., Sun Z., Wang Z., Xu H. Red light responsive diselenide-containing block copolymer micelles. J. Mater. Chem. B. 2013;1:740–743. doi: 10.1039/C2TB00186A. PubMed DOI

Yu L., Zhang M., Du F.-S., Li Z.-C. Ros-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polym. Chem. 2018;9:3762–3773. doi: 10.1039/C8PY00620B. DOI

Wang C., An X., Pang M., Zhang Z., Zhu X., Zhu J., Du Prez F.E., Pan X. Dynamic diselenide-containing polyesters from alcoholysis/oxidation of γ-butyroselenolactone. Polym. Chem. 2018;9:4044–4051. doi: 10.1039/C8PY00736E. DOI

Broaders K.E., Grandhe S., Fréchet J.M.J. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 2011;133:756–758. doi: 10.1021/ja110468v. PubMed DOI

De Gracia Lux C., Joshi-Barr S., Nguyen T., Mahmoud E., Schopf E., Fomina N., Almutairi A. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 2012;134:15758–15764. doi: 10.1021/ja303372u. PubMed DOI PMC

Jäger E., Höcherl A., Janoušková O., Jäger A., Hrubý M., Konefał R., Netopilik M., Pánek J., Šlouf M., Ulbrich K., et al. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ros)-triggered cargo release for drug-delivery applications. Nanoscale. 2016;8:6958–6963. doi: 10.1039/C6NR00791K. PubMed DOI

Lee D., Khaja S., Velasquez-Castano J.C., Dasari M., Sun C., Petros J., Taylor W.R., Murthy N. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 2007;6:765. doi: 10.1038/nmat1983. PubMed DOI

Kim S., Seong K., Kim O., Kim S., Seo H., Lee M., Khang G., Lee D. Polyoxalate nanoparticles as a biodegradable and biocompatible drug delivery vehicle. Biomacromolecules. 2010;11:555–560. doi: 10.1021/bm901409k. PubMed DOI

Lee D., Bae S., Ke Q., Lee J., Song B., Karumanchi S.A., Khang G., Choi H.S., Kang P.M. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia–reperfusion injury. J. Controll. Release. 2013;172:1102–1110. doi: 10.1016/j.jconrel.2013.09.020. PubMed DOI PMC

Lee D., Bae S., Hong D., Lim H., Yoon J.H., Hwang O., Park S., Ke Q., Khang G., Kang P.M. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents. Sci. Rep. 2013;3:2233. doi: 10.1038/srep02233. PubMed DOI PMC

Höcherl A., Jäger E., Jäger A., Hrubý M., Konefał R., Janoušková O., Spěváček J., Jiang Y., Schmidt P.W., Lodge T.P., et al. One-pot synthesis of reactive oxygen species (ros)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polym. Chem. 2017;8:1999–2004. doi: 10.1039/C7PY00270J. DOI

Dongwon L., Madhuri D., Venkata E., Niren M., Junhua Y., Robert D. Detection of hydrogen peroxide with chemiluminescent micelles. Int. J. Nanomed. 2008;3:471–476. PubMed PMC

Liang X., Duan J., Li X., Zhu X., Chen Y., Wang X., Sun H., Kong D., Li C., Yang J. Improved vaccine-induced immune responses via a ros-triggered nanoparticle-based antigen delivery system. Nanoscale. 2018;10:9489–9503. doi: 10.1039/C8NR00355F. PubMed DOI

Chang S.H., Lee H.J., Park S., Kim Y., Jeong B. Fast degradable polycaprolactone for drug delivery. Biomacromolecules. 2018;19:2302–2307. doi: 10.1021/acs.biomac.8b00266. PubMed DOI

Azevedo H.S., Santos T.C., Reis R.L. 4-controlling the degradation of natural polymers for biomedical applications. In: Reis R.L., Neves N.M., Mano J.F., Gomes M.E., Marques A.P., Azevedo H.S., editors. Natural-Based Polymers for Biomedical Application. Woodhead Publishing; Cambridge, UK: 2008. pp. 106–128.

Azevedo H.S., Reis R.L. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: Reis R.L., Román J.S., editors. Biodegradable Systems in Tissue Engineering and Regenerative Medicine. CRC Press; Boca Raton, FL, USA: 2004. pp. 186–210.

Buchholz V., Agarwal S., Greiner A. Synthesis and enzymatic degradation of soft aliphatic polyesters. Macromol. Biosci. 2016;16:207–213. doi: 10.1002/mabi.201500279. PubMed DOI

Berg J.M., Tymoczko J.L., Gatto G.J., Stryer L. Biochemistry. 5th ed. W.H. Freeman; New York, NY, USA: 2015.

Trousil J., Filippov S.K., Hrubý M., Mazel T., Syrová Z., Cmarko D., Svidenská S., Matějková J., Kováčik L., Porsch B., et al. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomed. Nanotechnol. Biol. Med. 2017;13:307–315. doi: 10.1016/j.nano.2016.08.031. PubMed DOI

Brulé E., Robert C., Thomas C.M. Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties. Volume 1170. American Chemical Society; Washington, DC, USA: 2014. Sequence-controlled ring-opening polymerization: Synthesis of new polyester structures; pp. 349–368.

Rasal R.M., Janorkar A.V., Hirt D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. DOI

Trousil J., Syrová Z., Dal N.-J.K., Rak D., Konefał R., Pavlova E., Matějková J., Cmarko D., Kubíčková P., Pavliš O., et al. Rifampicin nanoformulation enhances treatment of tuberculosis in zebrafish. Biomacromolecules. 2019;20:1798–1815. doi: 10.1021/acs.biomac.9b00214. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...