Therapeutic Drug Monitoring of Sunitinib in Gastrointestinal Stromal Tumors and Metastatic Renal Cell Carcinoma in Adults-A Review
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31259881
DOI
10.1097/ftd.0000000000000663
PII: 00007691-202002000-00003
Knihovny.cz E-zdroje
- MeSH
- gastrointestinální nádory farmakoterapie patologie MeSH
- gastrointestinální stromální tumory farmakoterapie patologie MeSH
- karcinom z renálních buněk farmakoterapie patologie MeSH
- lékové interakce MeSH
- lidé MeSH
- metastázy nádorů MeSH
- monitorování léčiv MeSH
- nádory ledvin farmakoterapie patologie MeSH
- protinádorové látky aplikace a dávkování škodlivé účinky farmakokinetika terapeutické užití MeSH
- rozvrh dávkování léků MeSH
- sunitinib aplikace a dávkování škodlivé účinky farmakokinetika terapeutické užití MeSH
- výpočet dávky léku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protinádorové látky MeSH
- sunitinib MeSH
BACKGROUND: Sunitinib is an inhibitor of multiple receptor tyrosine kinases and is a standard-of-care treatment for advanced and metastatic renal cell carcinoma and a second-line treatment in locally advanced inoperable and metastatic gastrointestinal stromal tumors. A fixed dose of the drug, however, does not produce a uniform therapeutic outcome in all patients, and many face adverse effects and/or toxicity. One of the possible causes of the interindividual variability in the efficacy and toxicity response is the highly variable systemic exposure to sunitinib and its active metabolite. This review aims to summarize all available clinical evidence of the treatment of adult patients using sunitinib in approved indications, addressing the necessity to introduce proper and robust therapeutic drug monitoring (TDM) of sunitinib and its major metabolite, N-desethylsunitinib. METHODS: The authors performed a systematic search of the available scientific literature using the PubMed online database. The search terms were "sunitinib" AND "therapeutic drug monitoring" OR "TDM" OR "plasma levels" OR "concentration" OR "exposure." The search yielded 520 journal articles. In total, 447 publications were excluded because they lacked sufficient relevance to the reviewed topic. The remaining 73 articles were, together with currently valid guidelines, thoroughly reviewed. RESULTS: There is sufficient evidence confirming the concentration-efficacy and concentration-toxicity relationship in the indications of gastrointestinal stromal tumors and metastatic renal clear-cell carcinoma. For optimal therapeutic response, total (sunitinib + N-desethylsunitinib) trough levels of 50-100 ng/mL serve as a reasonable target therapeutic range. To avoid toxicity, the total trough levels should not exceed 100 ng/mL. CONCLUSIONS: According to the current evidence presented in this review, a TDM-guided dose modification of sunitinib in selected groups of patients could provide a better treatment outcome while simultaneously preventing sunitinib toxicity.
Department of Biochemistry Medical Faculty Masaryk University
Department of Clinical Pharmacy University Hospital Ostrava Ostrava
Department of Pharmacology Medical Faculty Masaryk University Brno
Department of Pharmacology Medical Faculty Masaryk University Masaryk Memorial Cancer Institute; and
Zobrazit více v PubMed
Group ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(suppl 3):21–26.
Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v58–v68.
Electronic Medicines Compendium SmPC: SUTENT 25 Mg Hard Capsules. 2019. Available at: https://www.medicines.org.uk/emc/product/7968/smpc. Accessed April 15, 2019.
Lankheet NAG, Kloth JSL, Gadellaa-van Hooijdonk CGM, et al. Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer. 2014;110:2441–2449.
Lankheet NAG, Desar IME, Mulder SF, et al. Optimizing the dose in cancer patients treated with imatinib, sunitinib and pazopanib. Br J Clin Pharmacol. 2017;83:2195–2204.
Diekstra MHM, Klumpen HJ, Lolkema MPJK, et al. Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin Pharmacol Ther. 2014;96:81–89.
Gotta V, Widmer N, Decosterd LA, et al. Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol. 2014;74:1307–1319.
Larson RA, Druker BJ, Guilhot F, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111:4022–4028.
Blasdel C, Egorin MJ, Lagattuta TF, et al. Therapeutic drug monitoring in CML patients on imatinib. Blood. 2007;110:1699–1701. author reply 1701.
Verheijen RB, Swart LE, Beijnen JH, et al. Exposure-survival analyses of pazopanib in renal cell carcinoma and soft tissue sarcoma patients: opportunities for dose optimization. Cancer Chemother Pharmacol. 2017;80:1171–1178.
Cabel L, Blanchet B, Thomas-Schoemann A, et al. Drug monitoring of sunitinib in patients with advanced solid tumors: a monocentric observational French study. Fundam Clin Pharmacol. 2017;32:98–107.
Schmid TA, Gore ME. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol. 2016;8:348–371.
Papaetis GS, Syrigos KN. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs. 2009;23:377–389.
American Society of Health System Pharmacists Inc. DynaMed. Ipswich (MA): EBSCO Information Services; 1995. Available at: http://www.dynamed.com/resultlist?q=sunitinib&filter=all. Accessed April 15, 2019. Record No. 233006, Sunitinib. Feb 18, 2016.
Rodriguez-Vida A, Hutson TE, Bellmunt J, et al. New treatment options for metastatic renal cell carcinoma. ESMO Open. 2017;2:e000185.
Kidney Cancer, Version 4.2018, NCCN Clinical Practice Guidelines in Oncology. 2018:1–62. Available at: https://www2.tri-kobe.org/nccn/guideline/urological/english/kidney.pdf. Accessed November 22, 2018.
Soft Tissue Sarcoma, Version I.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017:1–137. Available at: http://nlmsf.org/wp-content/uploads/2018/03/NCCN-sarcoma-guidelines-for-physicians.pdf. Accessed October 9, 2018.
Haznedar JO, Patyna S, Bello CL, et al. Single- and multiple-dose disposition kinetics of sunitinib malate, a multitargeted receptor tyrosine kinase inhibitor: comparative plasma kinetics in non-clinical species. Cancer Chemother Pharmacol. 2009;64:691–706.
Di Gion P, Kanefendt F, Lindauer A, et al. Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet. 2011;50:551–603.
European Medicines Agency. Assessment Report for Sutent (Sunitinib) Procedure No. London, United Kingdom: EMA; 2010. EMA/H/C/000687/II/0021.
Bello CL, Sherman L, Zhou JH, et al. Effect of food on the pharmacokinetics of sunitinib malate (SU11248), a multi-targeted receptor tyrosine kinase inhibitor: results from a phase I study in healthy subjects. Anticancer Drugs. 2006;17:353–358.
Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–1373.
Yu H, Steeghs N, Kloth JS, et al. Integrated semi-physiological pharmacokinetic model for both sunitinib and its active metabolite SU12662. Br J Clin Pharmacol. 2015;79:809–819.
FDA. Approval package for NDA 21-938 (GIST) and NDA 21-968 (mRCC). In: Clinical Pharmacology and Biopharmaceutics Review. San Diego, CA: Center for Drug Evaluation and Research; 2005:1–190.
Toyama Y, Ueyama J, Nomura H, et al. Contribution of plasma proteins, albumin and alpha 1-acid glycoprotein, to pharmacokinetics of a multi-targeted receptor tyrosine kinase nhibitor, sunitinib, in analbuminemic rats. Anticancer Res. 2014;34:2283–2289.
Kunimatsu S, Mizuno T, Fukudo M, et al. Effect of P-glycoprotein and breast cancer resistance protein inhibition on the pharmacokinetics of sunitinib in rats. Drug Metab Dispos. 2013;41:1592–1597.
van der Veldt AAM, Eechoute K, Gelderblom H, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res. 2011;17:620–629.
Miura Y, Imamura CK, Fukunaga K, et al. Sunitinib-induced severe toxicities in a Japanese patient with the ABCG2 421 AA genotype. BMC Cancer. 2014;14:964.
Mizuno T, Fukudo M, Terada T, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27:631–639.
Kloth JS, Klümpen HJ, Yu H, et al. Predictive value of CYP3A and ABCB1 phenotyping probes for the pharmacokinetics of sunitinib: the ClearSun study. Clin Pharmacokinet. 2014;53:261–269.
Tang SC, Lagas JS, Lankheet NAG, et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer. 2012;130:223–233.
Sherman L, Peng G, Patyna S, et al. Open-label, single-dose, phase I study evaluating the mass balance and pharmacolkinetics (PKs) of sunitinib (SU) in healthy male subjects. EJC Suppl. 2007;5:116.
George S, Blay JY, Casali PG, et al. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer. 2009;45:1959–1968.
Houk BE, Bello CL, Kang DW, et al. Population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res. 2009;15:2497–2506.
Lankheet NAG, Knapen LM, Schellens JHM, et al. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit. 2014;36:326–334.
Crombag MBS, van Doremalen JGC, Janssen JM, et al. Therapeutic drug monitoring of small molecule kinase inhibitors in oncology in a real-world cohort study: does age matter? Br J Clin Pharmacol. 2018;84:2770–2778.
Bello CL, Garrett M, Sherman L, et al. Pharmacokinetics of sunitinib malate in subjects with hepatic impairment. Cancer Chemother Pharmacol. 2010;66:699–707.
Noda S, Otsuji T, Baba M, et al. Assessment of sunitinib-induced toxicities and clinical outcomes based on therapeutic drug monitoring of sunitinib for patients with renal cell carcinoma. Clin Genitourin Cancer. 2015;13:350–358.
Terada T, Noda S, Inui K, et al. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther. 2015;152:125–134.
Kappers MHW, van Esch JHM, Sluiter W, et al. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension. 2010;56:675–U216.
Kloth JSL, Binkhorst L, De Bruijn P, et al. Effect of dosing time on sunitinib pharmacokinetics. Eur J Cancer. 2013;49:S152.
Escudier B, Roigas J, Gillessen S, et al. Phase II study of sunitinib administered in a continuous once-daily dosing regimen in patients with cytokine-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27:4068–4075.
Eisen T, Sternberg CN, Robert C, et al. Targeted therapies for renal cell carcinoma: review of adverse event management strategies. J Natl Cancer Inst. 2012;104:93–113.
Guo J, Jin J, Oya M, et al. Safety of pazopanib and sunitinib in treatment-naïve patients with metastatic renal cell carcinoma: Asian versus non-Asian subgroup analysis of the COMPARZ trial. J Hematol Oncol. 2018;11:69.
Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–124.
Ibrahim EM, Kazkaz GA, Abouelkhair KM, et al. Sunitinib adverse events in metastatic renal cell carcinoma: a meta-analysis. Int J Clin Oncol. 2013;18:1060–1069.
Kollmannsberger C, Soulieres D, Wong R, et al. Sunitinib therapy for metastatic renal cell carcinoma: recommendations for management of side effects. Can Urol Assoc J. 2007;1:S41–S54.
Bracarda S, Iacovelli R, Boni L, et al. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol. 2016;27:366.
Lee JL, Kim MK, Park I, et al. RandomizEd phase II trial of Sunitinib four weeks on and two weeks off versus two weeks on and one week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26:2300–2305.
Ohba K, Miyata Y, Yasuda T, et al. Efficacy and safety of sunitinib alternate day regimen in patients with metastatic renal cell carcinoma in Japan: comparison with standard 4/2 schedule. Asia Pac J Clin Oncol. 2018;14:153–158.
Thomas-Schoemann A, Blanchet B, Bardin C, et al. Drug interactions with solid tumour-targeted therapies. Crit Rev Oncol Hematol. 2014;89:179–196.
Rudek MA, Moore PC, Mitsuyasu RT, et al. A phase 1/pharmacokinetic study of sunitinib in combination with highly active antiretroviral therapy in human immunodeficiency virus-positive patients with cancer: AIDS Malignancy Consortium trial AMC 061. Cancer. 2014;120:1194–1202.
Sugiyama M, Fujita K, Murayama N, et al. Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1'-hydroxylation. Drug Metab Dispos. 2011;39:757–762.
de Wit D, Gelderblom H, Sparreboom A, et al. Midazolam as a phenotyping probe to predict sunitinib exposure in patients with cancer. Cancer Chemother Pharmacol. 2014;73:87–96.
Abodunde OA, LevakaVeera RR, Desai R, et al. Colchicine toxicity precipitated by interaction with sunitinib. J Clin Pharm Ther. 2013;38:243–245.
van Leeuwen RWF, van Gelder T, Mathijssen RHJ, et al. Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol. 2014;15:E315–E326.
Kruse V, Somers A, Van Bortel L, et al. Sunitinib for metastatic renal cell cancer patients: observational study highlighting the risk of important drug-drug interactions. J Clin Pharm Ther. 2014;39:259–265.
Karczmarek-Borowska B, Salek-Zan A. Hepatotoxicity of molecular targeted therapy. Contemp Oncol. 2015;19:87–92.
Zhang M, Kim JA, Huang AYC. Optimizing tumor microenvironment for cancer immunotherapy: beta-glucan-based nanoparticles. Front Immunol. 2018;9:341.
Ljungberg B, Albiges L, Bensalah K, et al. EAU Guidelines on Renal Cell Carcinoma. 2018;2018:1–62. Available at: https://uroweb.org/wp-content/uploads/EAU-RCC-Guidelines-2018-large-text.pdf. Accessed October 9, 2018.
Houk BE, Bello CL, Poland B, et al. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66:357–371.
Gao B, Yeap S, Clements A, et al. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol. 2012;30:4017–4025.
Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25–35.
Britten CD, Kabbinavar F, Hecht JR, et al. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol. 2008;61:515–524.
de Wit D, Guchelaar HJ, den Hartigh J, et al. Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today. 2015;20:18–36.
Sabanathan D, Zhang A, Fox P, et al. Dose individualization of sunitinib in metastatic renal cell cancer: toxicity-adjusted dose or therapeutic drug monitoring. Cancer Chemother Pharmacol. 2017;80:385–393.
Numakura K, Fujiyama N, Takahashi M, et al. Clinical implications of pharmacokinetics of sunitinib malate and N-desethyl-sunitinib plasma concentrations for treatment outcome in metastatic renal cell carcinoma patients. Oncotarget. 2018;9:25277–25284.
Demetri GD, Heinrich MC, Fletcher JA, et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res. 2009;15:5902–5909.
Teo YL, Chue XP, Chau NM, et al. Association of drug exposure with toxicity and clinical response in metastatic renal cell carcinoma patients receiving an attenuated dosing regimen of sunitinib. Targeted Oncol. 2015;10:429–437.
Liu X, Fiocco M, Swen JJ, et al. Assessment of ethnic differences in sunitinib outcome between Caucasian and Asian patients with metastatic renal cell carcinoma: a meta-analysis. Acta Oncol. 2017;56:582–589.
Houk BE, Bello CL, Michaelson MD, et al. A population pharmacokinetic/pharmacodynamic (PK/PD) analysis of exposure-response for sunitinib in metastatic renal cell carcinoma (mRCC). EJC Suppl. 2007;5:300.
Lee SH, Bang YJ, Mainwaring P, et al. Sunitinib in metastatic renal cell carcinoma: an ethnic Asian subpopulation analysis for safety and efficacy. Asia Pac J Clin Oncol. 2014;10:237–245.
Chew CC, Ng S, Chee YL, et al. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice. Invest New Drugs. 2017;35:399–411.
Lahti S, Ludwig JM, Xing MZ, et al. In vitro biologic efficacy of sunitinib drug-eluting beads on human colorectal and hepatocellular carcinoma—a pilot study. PLoS One. 2017;12:e0174539.
Garrido-Cano I, Garcia-Garcia A, Peris-Vicente J, et al. A method to quantify several tyrosine kinase inhibitors in plasma by micellar liquid chromatography and validation according to the European Medicines Agency guidelines. Talanta. 2015;144:1287–1295.
Helvenstein M, Hambye S, Blankert B. Determination of three tyrosine kinase inhibitors and one active metabolite by an identical and validated ultra-performance liquid chromatography-DAD method in human plasma. Curr Pharm Anal. 2014;10:161–168.
Oberoi RK, Mittapalli RK, Fisher J, et al. Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: application in CNS distribution studies. Chromatographia. 2013;76: 1–18.
Posocco B, Buzzo M, Giodini L, et al. Analytical aspects of sunitinib and its geometric isomerism towards therapeutic drug monitoring in clinical routine. J Pharm Biomed Anal. 2018;160:360–367.
Keil C, Götze L, Olbert P, et al. Metastasized renal cell carcinoma. Measurement of plasma levels of the tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Urologe A. 2015;54:811–818.
Bouchet S, Chauzit E, Ducint D, et al. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin Chim Acta. 2011;412:1060–1067.
Couchman L, Birch M, Ireland R, et al. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012;403:1685–1695.
Henry H, Sobhi HR, Scheibner O, et al. Comparison between a high-resolution single-stage Orbitrap and a triple quadrupole mass spectrometer for quantitative analyses of drugs. Rapid Comm Mass Spectrom. 2012;26:499–509.
Lankheet NAG, Hillebrand MJX, Rosing H, et al. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2013;27:466–476.
Rodamer M, Elsinghorst PW, Kinzig M, et al. Development and validation of a liquid chromatography/tandem mass spectrometry procedure for the quantification of sunitinib (SU11248) and its active metabolite, N-desethyl sunitinib (SU12662), in human plasma: application to an explorative study. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:695–706.
Lankheet NA, Blank CU, Mallo H, et al. Determination of sunitinib and its active metabolite N-desethylsunitinib in sweat of a patient. J Anal Toxicol. 2011;35:558–565.
Rais R, Zhao M, He P, et al. Quantitation of unbound sunitinib and its metabolite N-desethyl sunitinib (SU12662) in human plasma by equilibrium dialysis and liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study. Biomed Chromatog. 2012;26:1315–1324.
de Bruijn P, Sleijfer S, Lam MH, et al. Bioanalytical method for the quantification of sunitinib and its N-desethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/tandem triple-quadrupole mass spectrometry. J Pharm Biomed Anal. 2010;51:934–941.
Musijowski J, Piórkowska E, Rudzki PJ. Determination of sunitinib in human plasma using liquid chromatography coupled with mass spectrometry. J Sep Sci. 2014;37:2652–2658.
Lankheet NAG, Steeghs N, Rosing H, et al. Quantification of sunitinib and N-desethyl sunitinib in human EDTA plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry: validation and application in routine therapeutic drug monitoring. Ther Drug Monit. 2013;35:168–176.
Herbrink M, de Vries N, Rosing H, et al. Quantification of 11 therapeutic kinase inhibitors in human plasma for therapeutic drug monitoring using liquid chromatography coupled with tandem mass spectrometry. Ther Drug Monit. 2016;38:649–656.
Merienne C, Rousset M, Ducint D, et al. High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS. J Pharm Biomed Anal. 2018;150:112–120.
Krautbauer S, Büchler C, Liebisch G. Relevance in the use of appropriate internal standards for accurate quantification using LC-MS/MS: tauro-conjugated bile acids as an example. Anal Chem. 2016;88:10957–10961.
De Nicolo A, Cantu M, D'Avolio A. Matrix effect management in liquid chromatography mass spectrometry: the internal standard normalized matrix effect. Bioanal. 2017;9:1093–1105.
van Erp NP, de Wit D, Guchelaar HJ, et al. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;937:33–43.
Qiu F, Bian W, Li J, et al. Simultaneous determination of sunitinib and its two metabolites in plasma of Chinese patients with metastatic renal cell carcinoma by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2013;27:615–621.
Chen X, Wang Z, Liu MP, et al. Determination of sunitinib and its active metabolite, N-desethyl sunitinib in mouse plasma and tissues by UPLC-MS/MS: assay development and application to pharmacokinetic and tissue distribution studies. Biomed Chromatogr. 2015;29:679–688.
Andriamanana I, Gana I, Duretz B, et al. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;926:83–91.
Takasaki S, Tanaka M, Kikuchi M, et al. Simultaneous analysis of oral anticancer drugs for renal cell carcinoma in human plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2018;32:e4184.
Götze L, Hegele A, Metzelder SK, et al. Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin Chim Acta. 2012;413:143–149.
He Y, Zhou L, Gao S, et al. Development and validation of a sensitive LC-MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. J Pharm Biomed Anal. 2018;148:65–72.
Honeywell R, Yarzadah K, Giovannetti E, et al. Simple and selective method for the determination of various tyrosine kinase inhibitors used in the clinical setting by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:1059–1068.
Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–337.
Teo YL, Chue XP, Chau NM, et al. Association of drug exposure with clinical response and toxicities in metastatic renal cell carcinoma patients (mRCC) receiving an alternative dosing (AD) regimen of sunitinib. J Clin Oncol. 2013;31:e13582.
Mendel DB, Cherrington JM, Laird AD. CCR 20th anniversary commentary: determining a pharmacokinetic/pharmacodynamic relationship for sunitinib—a look back. Clin Cancer Res. 2015;21:2415–2417.
Narjoz C, Cessot A, Thomas-Schoemann A, et al. Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs. 2015;33:257–268.
Yu H, Steeghs N, Nijenhuis CM, et al. Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53:305–325.
Goulooze SC, Galettis P, Boddy AV, et al. Monte Carlo simulations of the clinical benefits from therapeutic drug monitoring of sunitinib in patients with gastrointestinal stromal tumours. Cancer Chemother Pharmacol. 2016;78:209–216.
Uemura H, Shinohara N, Yuasa T, et al. A phase II study of sunitinib in Japanese patients with metastatic renal cell carcinoma: insights into the treatment, efficacy and safety. Jpn J Clin Oncol. 2010;40:194–202.
Takasaki S, Kawasaki Y, Kikuchi M, et al. Relationships between sunitinib plasma concentration and clinical outcomes in Japanese patients with metastatic renal cell carcinoma. Int J Clin Oncol. 2018;23:936–943.
Nagata M, Ishiwata Y, Takahashi Y, et al. Pharmacokinetic-pharmacodynamic analysis of sunitinib-induced thrombocytopenia in Japanese patients with renal cell carcinoma. Biol Pharm Bull. 2015;38:402–410.
Bello CL, Mulay M, Huang X, et al. Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic-pharmacodynamic evaluation of sunitinib. Clin Cancer Res. 2009;15:7045–7052.
Verheijen RB, Yu H, Schellens JHM, et al. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin Pharmacol Ther. 2017;102:765–776.
Houk BE, Bello C, Cohen DP, et al. Efficacy of sunitinib in patients with gastrointestinal stromal tumor (GIST): an exposure-response based meta-analysis. Mol Cancer Ther. 2007;6:3589S.
Teo YL, Wee HL, Chue XP, et al. Effect of the CYP3A5 and ABCB1 genotype on exposure, clinical response and manifestation of toxicities from sunitinib in Asian patients. Pharmacogenomics J. 2016;16:47–53.
Demlova R, Zdrazilova-Dubska L, Sterba J, et al. Host-dependent variables: the missing link to personalized medicine. Eur J Surg Oncol. 2018;44:1289–1294.
Mateo J, Chakravarty D, Dienstmann R, et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29:1895–1902.
Gurney H. Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol. 1996;14:2590–2611.
Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86:1297–1302.
Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell arcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103:763–773.
Kollmannsberger C, Bjarnason G, Burnett P, et al. Sunitinib in metastatic renal cell carcinoma: recommendations for management of noncardiovascular toxicities. Oncologist. 2011;16:543–553.
Maráz A, Cserháti A, Uhercsák G, et al. Dose escalation can maximize therapeutic potential of sunitinib in patients with metastatic renal cell carcinoma. BMC Cancer. 2018;18:296.
Raphael J, Thawer A, Bjarnason GA. Sunitinib dose-escalation after disease progression in metastatic renal cell carcinoma. Urol Oncol. 2018;36:12.e1–12.e6.
Klumpen HJ, Samer CF, Mathijssen RHJ, et al. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev. 2011;37:251–260.
Motzer RJ, Bacik J, Schwartz LH, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol. 2004;22:454–63.