Improving Wettability: Deposition of TiO2 Nanoparticles on the O2 Plasma Activated Polypropylene Membrane
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31284439
PubMed Central
PMC6651641
DOI
10.3390/ijms20133309
PII: ijms20133309
Knihovny.cz E-zdroje
- Klíčová slova
- O2 plasma, PP membrane, TiO2 nanoparticles, UV treatment, hydrophilicity,
- MeSH
- difrakce rentgenového záření MeSH
- fotoelektronová spektroskopie MeSH
- kyslík chemie MeSH
- membrány umělé * MeSH
- nanočástice chemie MeSH
- plazmové plyny chemie MeSH
- polypropyleny chemie MeSH
- smáčivost MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- teplota MeSH
- termogravimetrie MeSH
- titan chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH
- membrány umělé * MeSH
- plazmové plyny MeSH
- polypropyleny MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- voda MeSH
Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20-120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.
Department of Chemistry Faculty of Science University of Qom Qom 3716146611 Iran
Department of Physics Faculty of Science University of Bu Ali Sina Hamedan 65174 Iran
Zobrazit více v PubMed
Hu M.X., Yang Q., Xu Z.K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J. Membr. Sci. 2006;285:196–205. doi: 10.1016/j.memsci.2006.08.023. DOI
Yang Q., Xu Z.K., Dai Z.W., Wang J.L., Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem. Mater. 2005;17:3050–3058. doi: 10.1021/cm048012x. DOI
Liang L., Feng X., Peurrung L., Viswanathan V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J. Membr. Sci. 1999;162:235–246. doi: 10.1016/S0376-7388(99)00145-3. DOI
Qureshi A., Singh D., Singh N., Ataoglu S., Gulluoglu A.N., Tripathi A., Avasthi D. Effect of irradiation by 140 Mev Ag11 + ions on the optical and electrical properties of polypropylene/TiO2 composite. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009;267:3456–3460. doi: 10.1016/j.nimb.2009.07.016. DOI
Li C., Yue H., Wang Q., Shi M., Zhang H., Li X., Dong H., Yang S. A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries. J. Mater. Sci. 2019;54:1566–1579. doi: 10.1007/s10853-018-2903-2. DOI
Song Y.Z., Zhang Y., Yuan J.J., Lin C.E., Yin X., Sun C.C., Zhu B., Zhu L.P. Fast assemble of polyphenol derived coatings on polypropylene separator for high performance lithium-ion batteries. J. Electroanal. Chem. 2018;808:252–258. doi: 10.1016/j.jelechem.2017.12.021. DOI
Tuominen M., Lahti J., Lavonen J., Penttinen T., Räsänen J.P., Kuusipalo J. The influence of flame, corona and atmospheric plasma treatments on surface properties and digital print quality of extrusion coated paper. J. Adhes. Sci. Technol. 2010;24:471–492. doi: 10.1163/016942409X12561252292224. DOI
Zhao D., Kim J.F., Ignacz G., Pogany P., Lee Y.M., Szekely G. Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine. ACS Nano. 2019;13:125–133. doi: 10.1021/acsnano.8b04123. PubMed DOI
Yu H.Y., Tang Z.Q., Huang L., Cheng G., Li W., Zhou J., Yan M.G., Gu J.S., Wei X.W. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment. Water Res. 2008;42:4341–4347. doi: 10.1016/j.watres.2008.05.028. PubMed DOI
Fisher E.R. A Review of Plasma-Surface Interactions During Processing of Polymeric Materials Measured Using the IRIS Technique. Plasma Process. Polym. 2004;1:13–27. doi: 10.1002/ppap.200400011. DOI
Yan L., Li Y.S., Xiang C.B., Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci. 2006;276:162–167. doi: 10.1016/j.memsci.2005.09.044. DOI
Jian P., Yahui H., Yang W., Linlin L. Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr. Sci. 2006;284:9–16. doi: 10.1016/j.memsci.2006.07.052. DOI
Chandramouleeswaran S., Mhaske S., Kathe A., Varadarajan P., Prasad V., Vigneshwaran N. Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnology. 2007;18:385702. doi: 10.1088/0957-4484/18/38/385702. DOI
Altan M., Yildirim H. Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: Effects of surface modification. J. Mater. Sci. Technol. 2012;28:686–692. doi: 10.1016/S1005-0302(12)60116-9. DOI
Bottino A., Capannelli G., Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination. 2002;146:35–40. doi: 10.1016/S0011-9164(02)00469-1. DOI
Chin S.S., Chiang K., Fane A.G. The stability of polymeric membranes in a TiO2 photocatalysis process. J. Membr. Sci. 2006;275:202–211. doi: 10.1016/j.memsci.2005.09.033. DOI
Erdem N., Erdogan U.H., Cireli A.A., Onar N. Structural and ultraviolet-protective properties of nano-TiO2-doped polypropylene filaments. J. Appl. Polym. Sci. 2010;115:152–157. doi: 10.1002/app.30950. DOI
Luo M.L., Zhao J.Q., Tang W., Pu C.S. Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci. 2005;249:76–84. doi: 10.1016/j.apsusc.2004.11.054. DOI
Rahimpour A., Madaeni S., Taheri A., Mansourpanah Y. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 2008;313:158–169. doi: 10.1016/j.memsci.2007.12.075. DOI
Velásquez J., Valencia S., Rios L., Restrepo G., Marín J. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method. Chem. Eng. J. 2012;203:398–405. doi: 10.1016/j.cej.2012.07.068. DOI
Yang S., Gu J.S., Yu H.Y., Zhou J., Li S.F., Wu X.M., Wang L. Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 2011;83:157–165. doi: 10.1016/j.seppur.2011.09.030. DOI
Vatanpour V., Madaeni S.S., Khataee A.R., Salehi E., Zinadini S., Monfared H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination. 2012;292:19–29. doi: 10.1016/j.desal.2012.02.006. DOI
Bae T.H., Tak T.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005;249:1–8. doi: 10.1016/j.memsci.2004.09.008. DOI
Masaeli E., Morshed M., Tavanai H. Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2007;39:770–774. doi: 10.1002/sia.2587. DOI
Szabová R., Černáková L., Wolfová M., Černák M. Coating of TiO2 nanoparticles on the plasma activated polypropylene fibers. Acta Chim. Slovaca. 2009;2:70–76.
Chan C.M., Ko T.M., Hiraoka H. Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 1996;24:1–54. doi: 10.1016/0167-5729(96)80003-3. DOI
Kang X., Liu S., Dai Z., He Y., Song X., Tan Z. Titanium Dioxide: From Engineering to Applications. Catalysts. 2019;9:191. doi: 10.3390/catal9020191. DOI
Jaleh B., Shahbazi N. Surface properties of UV irradiated PC–TiO2 nanocomposite film. Appl. Surf. Sci. 2014;313:251–258. doi: 10.1016/j.apsusc.2014.05.197. DOI
Xu Q., Yang J., Dai J., Yang Y., Chen X., Wang Y. Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity. J. Membr. Sci. 2013;448:215–222. doi: 10.1016/j.memsci.2013.08.018. DOI
Chen H., Kong L., Wang Y. Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. J. Membr. Sci. 2015;487:109–116. doi: 10.1016/j.memsci.2015.03.044. DOI
Wang S., Ajji A., Guo S., Xiong C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017;9:110. doi: 10.3390/polym9030110. PubMed DOI PMC
Hernández-Aguirre O.A., Nunez-Pineda A., Tapia-Tapia M., Gomez Espinosa R.M. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. J. Chem. 2016;2016 doi: 10.1155/2016/2742013. DOI
Feizi Mohazzab B., Jaleh B., Kakuee O., Fattah-alhosseini A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Appl. Surf. Sci. 2019;478:623–635. doi: 10.1016/j.apsusc.2019.01.259. DOI
Feizi Mohazzab B., Jaleh B., Nasrollahzadeh M., Issaabadi Z. Journey on Greener Pathways via Synthesis of Pd/KB Polymeric Nanocomposite as a Recoverable Catalyst for the Ligand-Free Oxidative Hydroxylation of Phenylboronic Acid and Suzuki–Miyaura Coupling Reaction in Green Solvents. Catal. Lett. 2019;149:169–179. doi: 10.1007/s10562-018-2583-1. DOI
Fonouni M., Yegani R., Tavakkoli A., Mollazadeh S. Investigating the Effect of Various Oxidizing Agents on the Surface Functionalization of Microporous Polypropylene Membranes. J. Text. Polym. 2016;4:92–100.
Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI
Naghdi S., Jaleh B., Shahbazi N. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures. Appl. Surf. Sci. 2016;368:409–416. doi: 10.1016/j.apsusc.2016.01.193. DOI
Modification of Chitosan Membranes via Methane Ion Beam