Improving Wettability: Deposition of TiO2 Nanoparticles on the O2 Plasma Activated Polypropylene Membrane

. 2019 Jul 05 ; 20 (13) : . [epub] 20190705

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31284439

Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20-120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.

Zobrazit více v PubMed

Hu M.X., Yang Q., Xu Z.K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J. Membr. Sci. 2006;285:196–205. doi: 10.1016/j.memsci.2006.08.023. DOI

Yang Q., Xu Z.K., Dai Z.W., Wang J.L., Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem. Mater. 2005;17:3050–3058. doi: 10.1021/cm048012x. DOI

Liang L., Feng X., Peurrung L., Viswanathan V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J. Membr. Sci. 1999;162:235–246. doi: 10.1016/S0376-7388(99)00145-3. DOI

Qureshi A., Singh D., Singh N., Ataoglu S., Gulluoglu A.N., Tripathi A., Avasthi D. Effect of irradiation by 140 Mev Ag11 + ions on the optical and electrical properties of polypropylene/TiO2 composite. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009;267:3456–3460. doi: 10.1016/j.nimb.2009.07.016. DOI

Li C., Yue H., Wang Q., Shi M., Zhang H., Li X., Dong H., Yang S. A novel modified PP separator by grafting PAN for high-performance lithium–sulfur batteries. J. Mater. Sci. 2019;54:1566–1579. doi: 10.1007/s10853-018-2903-2. DOI

Song Y.Z., Zhang Y., Yuan J.J., Lin C.E., Yin X., Sun C.C., Zhu B., Zhu L.P. Fast assemble of polyphenol derived coatings on polypropylene separator for high performance lithium-ion batteries. J. Electroanal. Chem. 2018;808:252–258. doi: 10.1016/j.jelechem.2017.12.021. DOI

Tuominen M., Lahti J., Lavonen J., Penttinen T., Räsänen J.P., Kuusipalo J. The influence of flame, corona and atmospheric plasma treatments on surface properties and digital print quality of extrusion coated paper. J. Adhes. Sci. Technol. 2010;24:471–492. doi: 10.1163/016942409X12561252292224. DOI

Zhao D., Kim J.F., Ignacz G., Pogany P., Lee Y.M., Szekely G. Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine. ACS Nano. 2019;13:125–133. doi: 10.1021/acsnano.8b04123. PubMed DOI

Yu H.Y., Tang Z.Q., Huang L., Cheng G., Li W., Zhou J., Yan M.G., Gu J.S., Wei X.W. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment. Water Res. 2008;42:4341–4347. doi: 10.1016/j.watres.2008.05.028. PubMed DOI

Fisher E.R. A Review of Plasma-Surface Interactions During Processing of Polymeric Materials Measured Using the IRIS Technique. Plasma Process. Polym. 2004;1:13–27. doi: 10.1002/ppap.200400011. DOI

Yan L., Li Y.S., Xiang C.B., Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci. 2006;276:162–167. doi: 10.1016/j.memsci.2005.09.044. DOI

Jian P., Yahui H., Yang W., Linlin L. Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr. Sci. 2006;284:9–16. doi: 10.1016/j.memsci.2006.07.052. DOI

Chandramouleeswaran S., Mhaske S., Kathe A., Varadarajan P., Prasad V., Vigneshwaran N. Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnology. 2007;18:385702. doi: 10.1088/0957-4484/18/38/385702. DOI

Altan M., Yildirim H. Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: Effects of surface modification. J. Mater. Sci. Technol. 2012;28:686–692. doi: 10.1016/S1005-0302(12)60116-9. DOI

Bottino A., Capannelli G., Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination. 2002;146:35–40. doi: 10.1016/S0011-9164(02)00469-1. DOI

Chin S.S., Chiang K., Fane A.G. The stability of polymeric membranes in a TiO2 photocatalysis process. J. Membr. Sci. 2006;275:202–211. doi: 10.1016/j.memsci.2005.09.033. DOI

Erdem N., Erdogan U.H., Cireli A.A., Onar N. Structural and ultraviolet-protective properties of nano-TiO2-doped polypropylene filaments. J. Appl. Polym. Sci. 2010;115:152–157. doi: 10.1002/app.30950. DOI

Luo M.L., Zhao J.Q., Tang W., Pu C.S. Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci. 2005;249:76–84. doi: 10.1016/j.apsusc.2004.11.054. DOI

Rahimpour A., Madaeni S., Taheri A., Mansourpanah Y. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 2008;313:158–169. doi: 10.1016/j.memsci.2007.12.075. DOI

Velásquez J., Valencia S., Rios L., Restrepo G., Marín J. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method. Chem. Eng. J. 2012;203:398–405. doi: 10.1016/j.cej.2012.07.068. DOI

Yang S., Gu J.S., Yu H.Y., Zhou J., Li S.F., Wu X.M., Wang L. Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 2011;83:157–165. doi: 10.1016/j.seppur.2011.09.030. DOI

Vatanpour V., Madaeni S.S., Khataee A.R., Salehi E., Zinadini S., Monfared H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination. 2012;292:19–29. doi: 10.1016/j.desal.2012.02.006. DOI

Bae T.H., Tak T.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005;249:1–8. doi: 10.1016/j.memsci.2004.09.008. DOI

Masaeli E., Morshed M., Tavanai H. Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2007;39:770–774. doi: 10.1002/sia.2587. DOI

Szabová R., Černáková L., Wolfová M., Černák M. Coating of TiO2 nanoparticles on the plasma activated polypropylene fibers. Acta Chim. Slovaca. 2009;2:70–76.

Chan C.M., Ko T.M., Hiraoka H. Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 1996;24:1–54. doi: 10.1016/0167-5729(96)80003-3. DOI

Kang X., Liu S., Dai Z., He Y., Song X., Tan Z. Titanium Dioxide: From Engineering to Applications. Catalysts. 2019;9:191. doi: 10.3390/catal9020191. DOI

Jaleh B., Shahbazi N. Surface properties of UV irradiated PC–TiO2 nanocomposite film. Appl. Surf. Sci. 2014;313:251–258. doi: 10.1016/j.apsusc.2014.05.197. DOI

Xu Q., Yang J., Dai J., Yang Y., Chen X., Wang Y. Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity. J. Membr. Sci. 2013;448:215–222. doi: 10.1016/j.memsci.2013.08.018. DOI

Chen H., Kong L., Wang Y. Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. J. Membr. Sci. 2015;487:109–116. doi: 10.1016/j.memsci.2015.03.044. DOI

Wang S., Ajji A., Guo S., Xiong C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017;9:110. doi: 10.3390/polym9030110. PubMed DOI PMC

Hernández-Aguirre O.A., Nunez-Pineda A., Tapia-Tapia M., Gomez Espinosa R.M. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. J. Chem. 2016;2016 doi: 10.1155/2016/2742013. DOI

Feizi Mohazzab B., Jaleh B., Kakuee O., Fattah-alhosseini A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Appl. Surf. Sci. 2019;478:623–635. doi: 10.1016/j.apsusc.2019.01.259. DOI

Feizi Mohazzab B., Jaleh B., Nasrollahzadeh M., Issaabadi Z. Journey on Greener Pathways via Synthesis of Pd/KB Polymeric Nanocomposite as a Recoverable Catalyst for the Ligand-Free Oxidative Hydroxylation of Phenylboronic Acid and Suzuki–Miyaura Coupling Reaction in Green Solvents. Catal. Lett. 2019;149:169–179. doi: 10.1007/s10562-018-2583-1. DOI

Fonouni M., Yegani R., Tavakkoli A., Mollazadeh S. Investigating the Effect of Various Oxidizing Agents on the Surface Functionalization of Microporous Polypropylene Membranes. J. Text. Polym. 2016;4:92–100.

Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI

Naghdi S., Jaleh B., Shahbazi N. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures. Appl. Surf. Sci. 2016;368:409–416. doi: 10.1016/j.apsusc.2016.01.193. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Modification of Chitosan Membranes via Methane Ion Beam

. 2020 May 13 ; 25 (10) : . [epub] 20200513

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...