Modification of Chitosan Membranes via Methane Ion Beam

. 2020 May 13 ; 25 (10) : . [epub] 20200513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32414061

Chitosan has been used for biomedical applications in recent years, primarily because of its biocompatibility. A chitosan membrane with a 30 μm thickness was prepared and investigated for its surface modification using methane ions. Methane ions were implanted into the chitosan membrane using a Kaufman ion source; bombardment was accomplished using three accelerating voltages of ion beams-30, 55, and 80 keV. The influence of the ion bombardment on morphology, crystallinity, and hydrophilicity was investigated. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy analysis showed that a triplet bond appeared after the implantation of methane ions (acceleration voltage: 80 keV), culminating in the creation of a more amorphous membrane structure. The analyses of atomic force microscopy (AFM) images showed that, with the increase in bombardment energy, the roughness of the surface changed. These results revealed that ion bombardment improved the hydrophilicity of the membranes and the water fluxes of chitosan membranes altered after methane ion bombardment.

Zobrazit více v PubMed

Baroudi A., García-Payo C., Khayet M. Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polyme. 2018;10:117. doi: 10.3390/polym10020117. PubMed DOI PMC

Huang R.H., Du Y.M., Yang J.H. Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydr. Polyme. 2003;51:431–438. doi: 10.1016/j.carbpol.2003.10.001. DOI

Qin C., Zhou B., Zeng L., Zhang Z., Liu Y., Du Y., Xiao L. The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem. 2004;84:107–115. doi: 10.1016/S0308-8146(03)00181-X. DOI

Biro L.P., Gyulai J., Havancsak K. Scanning probe microscopy investigation of nanometer structures produced by irradiation with 200 MeV ions. Vaccum. 1998;50:263–272. doi: 10.1016/S0042-207X(98)00051-7. DOI

Liu H., Du Y., Wang X., Hu Y., Kennedy J.F. Interaction between chitosan and alkyl β-d-glucopyranoside and its effect on their antimicrobial activity. Carbohydr. Polym. 2004;56:243–250. doi: 10.1016/j.carbpol.2004.03.001. DOI

Jeon Y.J., Kim S.K. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Cabohydr. Polym. 2000;41:133–144. doi: 10.1016/S0144-8617(99)00084-3. DOI

Goncalves V.L., Laranjeira M.C.M., Favere V.T., Pedrosa R.C. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polimeros. 2005;15:6–12. doi: 10.1590/S0104-14282005000100005. DOI

El-Badry B.A., Zaki M.F., Abdul-Kader A.M., Hegazy T.M., Morsy A.A. Ion bombardment of Poly-Allyl-Diglycol-Carbonate (CR-39) Vacuum. 2009;83:1138–1142. doi: 10.1016/j.vacuum.2009.02.010. DOI

Garcia J.A., Rodriguez R.J. Ion implantation techniques for non-electronic applications. Vacuum. 2011;85:1125–1129. doi: 10.1016/j.vacuum.2010.12.024. DOI

Wanichapichart P., Taweepreeda W., Choomgan P., Yu L.D. Argon and nitrogen beams influencing membrane permeate fluxes and microbial growth. Radiat. Phys. Chem. 2010;79:214–218. doi: 10.1016/j.radphyschem.2009.08.040. DOI

James J., Joseph B., Shaji A., Nancy P., Kalarikkal N., Thomas S., Grohens Y., Vignaud G. Microscopic Analysis of Plasma-Activated Polymeric Materials. In: Sabu T., Miran M., Uroš C., Petr Š., Praveen K.M., editors. Non-Thermal Plasma Technology for Polymeric Materials. Elsevier; Amsterdam, The Netherlands: 2019. pp. 287–317. Chapter 11. DOI

Prakrajang K., Wanichapichart P., Anuntalabhochai S., Pitakrattananukool S., Yu L.D. Ion beam modification of chitosan and cellulose membranes for simulation of ion bombardment of plant cell envelope. Nucl. Instrum. Meth. Phys. Res. B. 2009;267:1645–1649. doi: 10.1016/j.nimb.2009.01.094. DOI

Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI

Jaleh B., Parvin P., Sheikh N., Zamanipour Z., Sajad B. Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser. Nucl. Instrum. Meth. Phys. Res. B. 2007;265:330–333. doi: 10.1016/j.nimb.2007.08.067. DOI

Jaleh B., Shayegani Madad M., Farshchi Tabrizi M., Habibi S., Golbedaghi R., Keymanesh M.R. UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film. J. Iran. Chem. Soc. 2011;8:161–168. doi: 10.1007/BF03254293. DOI

Jaleh B., Parvin P., Sheikh N., Ziaie F., Haghshenas M., Bozorg L. Evaluation of physico-chemical properties of electron beam-irradiated polycarbonate film. Radiat. Phys. Chem. 2007;76:1715–1719. doi: 10.1016/j.radphyschem.2007.03.008. DOI

Sofield C.J., Sugden S., Ing J., Bridwell L.B., Wang Y.Q. Ion beam modification of polymers. Vacuum. 1993;44:285–290. doi: 10.1016/0042-207X(93)90171-6. DOI

Velardi L., Lorusso A., Paladini F., Siciliano M.V., Giulio M., Raino A., Nassisi V. Modification of polymer characteristics by laser and ion beam. Radiat. Eff. Defects Solids. 2010;165:637–642. doi: 10.1080/10420151003729516. DOI

Khan K.A., Salmieri S., Dussault D., URIBE-CALDERON J., Kamal M.R., Safrany A., Lacroix M. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J. Agric. Food Chem. 2010;58:7878–7885. doi: 10.1021/jf1006853. PubMed DOI

Jaleh B., Gavary N., Fakhri P., Muensit N., Taheri S.M. Characteristics of PVDF membranes irradiated by electron beam. Membranes. 2015;5:1–10. doi: 10.3390/membranes5010001. PubMed DOI PMC

Jaleh B., Etivand E.S., Mohazzab B.F., Nasrollahzadeh M., Varma R.S. Improving wettability: Deposition of TiO2 nanoparticles on the O2 plasma activated polypropylene membrane. Int. J. Mol. Sci. 2019;20:3309. doi: 10.3390/ijms20133309. PubMed DOI PMC

Leveneur J., Rajan A., McDonald-Wharry J., Le Guen M.J., Pickering K., Kennedy J. Structural and chemical changes of cellulose fibres under low energy ion implantations. Surf. Coat. Tech. 2018;355:191–199. doi: 10.1016/j.surfcoat.2018.04.006. DOI

Cheng X., Kondyurin A., Bao S., Bilek M.M.M., Ye L. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization. Appl. Surf. Sci. 2017;416:686–695. doi: 10.1016/j.apsusc.2017.04.179. DOI

Mathakari N.L., Bhoraskar V.N., Dhole S.D. MeV energy electron beam induced damage in isotactic polypropylene. Nucl. Instrum. Meth. Phys. Res. B. 2008;266:3075–3080. doi: 10.1016/j.nimb.2008.03.165. DOI

Endrskt R., Skvorckik V., Rybka V., Hnatowicz V. Surface modification of polymers indused by ion implantation. Radiat. Eff. Defects Solids. 1995;137:25–28. doi: 10.1080/10420159508222687. DOI

Chmielewski A.G., Migdal W., Swietoslawski J., Jakubaszek U., Tarnowski T. Chemical-radiation degradation of natural oligoamino-polysaccharides for agricultural application. Radiat. Phys. Chem. 2007;76:1840–1842. doi: 10.1016/j.radphyschem.2007.04.013. DOI

Kulshrestha V., Awasthi K., Acharya N.K., Singh M., Bhagwat P.V., Vijay Y.K. Structural, optical, thermo-mechanical and transport properties of ion irradiated polymer membranes. Polym. Bull. 2006;56:427–435. doi: 10.1007/s00289-006-0509-3. DOI

Gryczka U., Dondi D., Chmielewski A.G., Migdal W., Buttafava A., Faucitano A. The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiat. Phys. Chem. 2009;78:543–548. doi: 10.1016/j.radphyschem.2009.03.081. DOI

Singh Rathore B., Singh Gaur M., Singh F., Shanker Singh K. Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat. Eff. Defects Solids. 2012;167:131–140. doi: 10.1080/10420150.2011.586034. DOI

Nagata S., Konishi Y., Tsuchiya B., Toh K., Yamamoto S., Takahiro K., Shikama T. Ion beam effects on electrical characteristics of proton conductive polymer. Nucl. Instr. Meth. Phys. Res. B. 2007;257:519–522. doi: 10.1016/j.nimb.2007.01.111. DOI

Nasef M.M., Saidi H., Dahlan K.Z.M. Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes. Nucl. Instr. Meth. Res. B. 2007;265:168–172. doi: 10.1016/j.nimb.2007.08.044. DOI

Fintzou A.T., Badeka A.V., Kontominas M.G., Ringanakos K.A. Changes in physicochemical and mechanical properties of γ-irradiated polypropylene syringes as a function of irradiation dose. Radiat. Phys. Chem. 2006;75:87–97. doi: 10.1016/j.radphyschem.2005.03.014. DOI

Murthy C.S., Posselt M., Frei T. Three-dimensional modeling of low-dose BF+2 implantation into single-crystalline silicon. J. Vac. Sci. Technol B. 1996;14:278–282. doi: 10.1116/1.588461. DOI

Ziegler J.F., Biersack J.P., Ziegler M.D. The Stopping and Range of Ions in Matter. SRIM, Co.; Chester, MD, USA: 2008.

SRIM-2008 Software Package. [(accessed on 25 February 2019)]; Available online: http://www.srim.org.

Popok V.N. High-fluence ion implantation of polymers: Evolution of structure and composition. In: Kumar V., Chaudhary B., Sharma V., Verma K., editors. Radiation Effects in Polymeric Materials. Springer; Cham, Switzerland: 2019. pp. 69–111. Chapter 3. DOI

Park S., Baker J.O., Himmel M.E., Parilla P.A., Johnson D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 2010;3:1–10. doi: 10.1186/1754-6834-3-10. PubMed DOI PMC

Cartier N., Domand A., Chanzy H. Single crystals of chitosan. Int. J. Biol. Macromol. 1990;12:289–294. doi: 10.1016/0141-8130(90)90015-3. PubMed DOI

Zhang Y., Xue C., Xue Y., Gao R., Zhang X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 2005;340:1914–1917. doi: 10.1016/j.carres.2005.05.005. PubMed DOI

Zhao N.R., Wang Y.J., Ren L., Chen X.F. Surface Modification of Chitosan Membranes by Oxygen Plasma Treatment. Mater. Sci. Forum. 2009;610:1259–1262. doi: 10.4028/www.scientific.net/MSF.610-613.1259. DOI

Wanichapichart P., Sungkum R., Taweepreda W., Nisoa M. Characteristics of chitosan membranes modified by argon plasmas. Surf. Coat. Technol. 2009;203:2531–2535. doi: 10.1016/j.surfcoat.2009.02.069. DOI

Li X., Shi X., Wang M., Du Y. Xylan chitosan conjugate A potential food preservative. Food. Chem. 2011;126:520–525. doi: 10.1016/j.foodchem.2010.11.037. DOI

Vijayalakshmi K., Devi B., Sudha P.N., Venkatesan J., Anil S. Synthesis, Characterization and applications of nanochitosan/sodium alginate/microcrystalline cellulose film. J. Nanomed. Nanotechnol. 2016;7:419–429. doi: 10.4172/2157-7439.1000419. DOI

Choi S.C., Han S., Choi W.K., Jung H.J., Koh S.K. Hydrophilic group formation on hydrocarbon polypropylene and polystyrene by ion-assisted reaction in an O2 environment. Nucl. Instr. Meth. Phys. Res. B. 1999;152:291–300. doi: 10.1016/S0168-583X(99)00120-2. DOI

Dworecki K., Drabik M., Hasegawa T., Wasik S. Modification of polymer membranes by ion implantation. Nucl. Instr. Meth. Phys. Res. B. 2004;225:483–488. doi: 10.1016/j.nimb.2004.05.024. DOI

Shang H.M., Wang Y., Takahashi K., Cao G.Z., Li D., Xia Y.N. Nanostructured superhydrophobic surfaces. J. Mater. Sci. 2005;40:3587–3591. doi: 10.1007/s10853-005-2892-9. DOI

Sperelakis N. Cell Physiology Source Book. 4th ed. Academic Press; San Diego, CA, USA: 2011.

Wanichapichart P., Kaewnoparat S., Phud-hai W., Buaking K. Characteristic of Filtration Membranes Produced by Acetobacter xylinum. Songklanakarin J. Sci. Technol. 2003;24:855–862.

Zhu F., Tajkhorshid E., Schulten K. Pressure-Induced Water Transport in Membrane Channels Studied by Molecular Dynamics. J. Biophysical. 2002;83:154–160. doi: 10.1016/S0006-3495(02)75157-6. PubMed DOI PMC

Asenjo J.A. Separation Processes in Biotechnology. In: Asenjo J.A., editor. Bioprocess Technology Serie. Marcel Dekker; New York, NY, USA: 1990. p. 212.

Wanichapichart P., Yu L. Chitosan membrane filtering characteristics modification by N-ion beams. Surf. Coat. Technol. 2007;201:8165–8169. doi: 10.1016/j.surfcoat.2006.11.047. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...