Modification of Chitosan Membranes via Methane Ion Beam
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32414061
PubMed Central
PMC7288131
DOI
10.3390/molecules25102292
PII: molecules25102292
Knihovny.cz E-zdroje
- Klíčová slova
- ATR-FTIR, characterization, chitosan membrane, methane ion, surface modification,
- MeSH
- chitosan chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- membrány umělé * MeSH
- methan chemie MeSH
- mikroskopie atomárních sil MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan MeSH
- membrány umělé * MeSH
- methan MeSH
Chitosan has been used for biomedical applications in recent years, primarily because of its biocompatibility. A chitosan membrane with a 30 μm thickness was prepared and investigated for its surface modification using methane ions. Methane ions were implanted into the chitosan membrane using a Kaufman ion source; bombardment was accomplished using three accelerating voltages of ion beams-30, 55, and 80 keV. The influence of the ion bombardment on morphology, crystallinity, and hydrophilicity was investigated. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy analysis showed that a triplet bond appeared after the implantation of methane ions (acceleration voltage: 80 keV), culminating in the creation of a more amorphous membrane structure. The analyses of atomic force microscopy (AFM) images showed that, with the increase in bombardment energy, the roughness of the surface changed. These results revealed that ion bombardment improved the hydrophilicity of the membranes and the water fluxes of chitosan membranes altered after methane ion bombardment.
Chemistry Department Payame Noor University Tehran 19395 4697 Iran
Department of Chemistry Faculty of Science University of Qom Qom 3716146611 Iran
Physics Department Bu Ali Sina University Hamedan 65174 Iran
Zobrazit více v PubMed
Baroudi A., García-Payo C., Khayet M. Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polyme. 2018;10:117. doi: 10.3390/polym10020117. PubMed DOI PMC
Huang R.H., Du Y.M., Yang J.H. Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydr. Polyme. 2003;51:431–438. doi: 10.1016/j.carbpol.2003.10.001. DOI
Qin C., Zhou B., Zeng L., Zhang Z., Liu Y., Du Y., Xiao L. The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem. 2004;84:107–115. doi: 10.1016/S0308-8146(03)00181-X. DOI
Biro L.P., Gyulai J., Havancsak K. Scanning probe microscopy investigation of nanometer structures produced by irradiation with 200 MeV ions. Vaccum. 1998;50:263–272. doi: 10.1016/S0042-207X(98)00051-7. DOI
Liu H., Du Y., Wang X., Hu Y., Kennedy J.F. Interaction between chitosan and alkyl β-d-glucopyranoside and its effect on their antimicrobial activity. Carbohydr. Polym. 2004;56:243–250. doi: 10.1016/j.carbpol.2004.03.001. DOI
Jeon Y.J., Kim S.K. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Cabohydr. Polym. 2000;41:133–144. doi: 10.1016/S0144-8617(99)00084-3. DOI
Goncalves V.L., Laranjeira M.C.M., Favere V.T., Pedrosa R.C. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polimeros. 2005;15:6–12. doi: 10.1590/S0104-14282005000100005. DOI
El-Badry B.A., Zaki M.F., Abdul-Kader A.M., Hegazy T.M., Morsy A.A. Ion bombardment of Poly-Allyl-Diglycol-Carbonate (CR-39) Vacuum. 2009;83:1138–1142. doi: 10.1016/j.vacuum.2009.02.010. DOI
Garcia J.A., Rodriguez R.J. Ion implantation techniques for non-electronic applications. Vacuum. 2011;85:1125–1129. doi: 10.1016/j.vacuum.2010.12.024. DOI
Wanichapichart P., Taweepreeda W., Choomgan P., Yu L.D. Argon and nitrogen beams influencing membrane permeate fluxes and microbial growth. Radiat. Phys. Chem. 2010;79:214–218. doi: 10.1016/j.radphyschem.2009.08.040. DOI
James J., Joseph B., Shaji A., Nancy P., Kalarikkal N., Thomas S., Grohens Y., Vignaud G. Microscopic Analysis of Plasma-Activated Polymeric Materials. In: Sabu T., Miran M., Uroš C., Petr Š., Praveen K.M., editors. Non-Thermal Plasma Technology for Polymeric Materials. Elsevier; Amsterdam, The Netherlands: 2019. pp. 287–317. Chapter 11. DOI
Prakrajang K., Wanichapichart P., Anuntalabhochai S., Pitakrattananukool S., Yu L.D. Ion beam modification of chitosan and cellulose membranes for simulation of ion bombardment of plant cell envelope. Nucl. Instrum. Meth. Phys. Res. B. 2009;267:1645–1649. doi: 10.1016/j.nimb.2009.01.094. DOI
Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI
Jaleh B., Parvin P., Sheikh N., Zamanipour Z., Sajad B. Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser. Nucl. Instrum. Meth. Phys. Res. B. 2007;265:330–333. doi: 10.1016/j.nimb.2007.08.067. DOI
Jaleh B., Shayegani Madad M., Farshchi Tabrizi M., Habibi S., Golbedaghi R., Keymanesh M.R. UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film. J. Iran. Chem. Soc. 2011;8:161–168. doi: 10.1007/BF03254293. DOI
Jaleh B., Parvin P., Sheikh N., Ziaie F., Haghshenas M., Bozorg L. Evaluation of physico-chemical properties of electron beam-irradiated polycarbonate film. Radiat. Phys. Chem. 2007;76:1715–1719. doi: 10.1016/j.radphyschem.2007.03.008. DOI
Sofield C.J., Sugden S., Ing J., Bridwell L.B., Wang Y.Q. Ion beam modification of polymers. Vacuum. 1993;44:285–290. doi: 10.1016/0042-207X(93)90171-6. DOI
Velardi L., Lorusso A., Paladini F., Siciliano M.V., Giulio M., Raino A., Nassisi V. Modification of polymer characteristics by laser and ion beam. Radiat. Eff. Defects Solids. 2010;165:637–642. doi: 10.1080/10420151003729516. DOI
Khan K.A., Salmieri S., Dussault D., URIBE-CALDERON J., Kamal M.R., Safrany A., Lacroix M. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J. Agric. Food Chem. 2010;58:7878–7885. doi: 10.1021/jf1006853. PubMed DOI
Jaleh B., Gavary N., Fakhri P., Muensit N., Taheri S.M. Characteristics of PVDF membranes irradiated by electron beam. Membranes. 2015;5:1–10. doi: 10.3390/membranes5010001. PubMed DOI PMC
Jaleh B., Etivand E.S., Mohazzab B.F., Nasrollahzadeh M., Varma R.S. Improving wettability: Deposition of TiO2 nanoparticles on the O2 plasma activated polypropylene membrane. Int. J. Mol. Sci. 2019;20:3309. doi: 10.3390/ijms20133309. PubMed DOI PMC
Leveneur J., Rajan A., McDonald-Wharry J., Le Guen M.J., Pickering K., Kennedy J. Structural and chemical changes of cellulose fibres under low energy ion implantations. Surf. Coat. Tech. 2018;355:191–199. doi: 10.1016/j.surfcoat.2018.04.006. DOI
Cheng X., Kondyurin A., Bao S., Bilek M.M.M., Ye L. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization. Appl. Surf. Sci. 2017;416:686–695. doi: 10.1016/j.apsusc.2017.04.179. DOI
Mathakari N.L., Bhoraskar V.N., Dhole S.D. MeV energy electron beam induced damage in isotactic polypropylene. Nucl. Instrum. Meth. Phys. Res. B. 2008;266:3075–3080. doi: 10.1016/j.nimb.2008.03.165. DOI
Endrskt R., Skvorckik V., Rybka V., Hnatowicz V. Surface modification of polymers indused by ion implantation. Radiat. Eff. Defects Solids. 1995;137:25–28. doi: 10.1080/10420159508222687. DOI
Chmielewski A.G., Migdal W., Swietoslawski J., Jakubaszek U., Tarnowski T. Chemical-radiation degradation of natural oligoamino-polysaccharides for agricultural application. Radiat. Phys. Chem. 2007;76:1840–1842. doi: 10.1016/j.radphyschem.2007.04.013. DOI
Kulshrestha V., Awasthi K., Acharya N.K., Singh M., Bhagwat P.V., Vijay Y.K. Structural, optical, thermo-mechanical and transport properties of ion irradiated polymer membranes. Polym. Bull. 2006;56:427–435. doi: 10.1007/s00289-006-0509-3. DOI
Gryczka U., Dondi D., Chmielewski A.G., Migdal W., Buttafava A., Faucitano A. The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiat. Phys. Chem. 2009;78:543–548. doi: 10.1016/j.radphyschem.2009.03.081. DOI
Singh Rathore B., Singh Gaur M., Singh F., Shanker Singh K. Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat. Eff. Defects Solids. 2012;167:131–140. doi: 10.1080/10420150.2011.586034. DOI
Nagata S., Konishi Y., Tsuchiya B., Toh K., Yamamoto S., Takahiro K., Shikama T. Ion beam effects on electrical characteristics of proton conductive polymer. Nucl. Instr. Meth. Phys. Res. B. 2007;257:519–522. doi: 10.1016/j.nimb.2007.01.111. DOI
Nasef M.M., Saidi H., Dahlan K.Z.M. Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes. Nucl. Instr. Meth. Res. B. 2007;265:168–172. doi: 10.1016/j.nimb.2007.08.044. DOI
Fintzou A.T., Badeka A.V., Kontominas M.G., Ringanakos K.A. Changes in physicochemical and mechanical properties of γ-irradiated polypropylene syringes as a function of irradiation dose. Radiat. Phys. Chem. 2006;75:87–97. doi: 10.1016/j.radphyschem.2005.03.014. DOI
Murthy C.S., Posselt M., Frei T. Three-dimensional modeling of low-dose BF+2 implantation into single-crystalline silicon. J. Vac. Sci. Technol B. 1996;14:278–282. doi: 10.1116/1.588461. DOI
Ziegler J.F., Biersack J.P., Ziegler M.D. The Stopping and Range of Ions in Matter. SRIM, Co.; Chester, MD, USA: 2008.
SRIM-2008 Software Package. [(accessed on 25 February 2019)]; Available online: http://www.srim.org.
Popok V.N. High-fluence ion implantation of polymers: Evolution of structure and composition. In: Kumar V., Chaudhary B., Sharma V., Verma K., editors. Radiation Effects in Polymeric Materials. Springer; Cham, Switzerland: 2019. pp. 69–111. Chapter 3. DOI
Park S., Baker J.O., Himmel M.E., Parilla P.A., Johnson D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 2010;3:1–10. doi: 10.1186/1754-6834-3-10. PubMed DOI PMC
Cartier N., Domand A., Chanzy H. Single crystals of chitosan. Int. J. Biol. Macromol. 1990;12:289–294. doi: 10.1016/0141-8130(90)90015-3. PubMed DOI
Zhang Y., Xue C., Xue Y., Gao R., Zhang X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 2005;340:1914–1917. doi: 10.1016/j.carres.2005.05.005. PubMed DOI
Zhao N.R., Wang Y.J., Ren L., Chen X.F. Surface Modification of Chitosan Membranes by Oxygen Plasma Treatment. Mater. Sci. Forum. 2009;610:1259–1262. doi: 10.4028/www.scientific.net/MSF.610-613.1259. DOI
Wanichapichart P., Sungkum R., Taweepreda W., Nisoa M. Characteristics of chitosan membranes modified by argon plasmas. Surf. Coat. Technol. 2009;203:2531–2535. doi: 10.1016/j.surfcoat.2009.02.069. DOI
Li X., Shi X., Wang M., Du Y. Xylan chitosan conjugate A potential food preservative. Food. Chem. 2011;126:520–525. doi: 10.1016/j.foodchem.2010.11.037. DOI
Vijayalakshmi K., Devi B., Sudha P.N., Venkatesan J., Anil S. Synthesis, Characterization and applications of nanochitosan/sodium alginate/microcrystalline cellulose film. J. Nanomed. Nanotechnol. 2016;7:419–429. doi: 10.4172/2157-7439.1000419. DOI
Choi S.C., Han S., Choi W.K., Jung H.J., Koh S.K. Hydrophilic group formation on hydrocarbon polypropylene and polystyrene by ion-assisted reaction in an O2 environment. Nucl. Instr. Meth. Phys. Res. B. 1999;152:291–300. doi: 10.1016/S0168-583X(99)00120-2. DOI
Dworecki K., Drabik M., Hasegawa T., Wasik S. Modification of polymer membranes by ion implantation. Nucl. Instr. Meth. Phys. Res. B. 2004;225:483–488. doi: 10.1016/j.nimb.2004.05.024. DOI
Shang H.M., Wang Y., Takahashi K., Cao G.Z., Li D., Xia Y.N. Nanostructured superhydrophobic surfaces. J. Mater. Sci. 2005;40:3587–3591. doi: 10.1007/s10853-005-2892-9. DOI
Sperelakis N. Cell Physiology Source Book. 4th ed. Academic Press; San Diego, CA, USA: 2011.
Wanichapichart P., Kaewnoparat S., Phud-hai W., Buaking K. Characteristic of Filtration Membranes Produced by Acetobacter xylinum. Songklanakarin J. Sci. Technol. 2003;24:855–862.
Zhu F., Tajkhorshid E., Schulten K. Pressure-Induced Water Transport in Membrane Channels Studied by Molecular Dynamics. J. Biophysical. 2002;83:154–160. doi: 10.1016/S0006-3495(02)75157-6. PubMed DOI PMC
Asenjo J.A. Separation Processes in Biotechnology. In: Asenjo J.A., editor. Bioprocess Technology Serie. Marcel Dekker; New York, NY, USA: 1990. p. 212.
Wanichapichart P., Yu L. Chitosan membrane filtering characteristics modification by N-ion beams. Surf. Coat. Technol. 2007;201:8165–8169. doi: 10.1016/j.surfcoat.2006.11.047. DOI