polyamine uptake transporter 2 (put2) and decaying seeds enhance phyA-mediated germination by overcoming PIF1 repression of germination
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31339933
PubMed Central
PMC6682160
DOI
10.1371/journal.pgen.1008292
PII: PGENETICS-D-18-02234
Knihovny.cz E-zdroje
- MeSH
- 1-pyrrolin-5-karboxylátdehydrogenasa genetika metabolismus MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- down regulace MeSH
- fytochrom A metabolismus MeSH
- klíčení MeSH
- mutace MeSH
- polyaminy metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- světlo MeSH
- transkripční faktory bHLH metabolismus MeSH
- transportní systémy aminokyselin genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-pyrrolin-5-karboxylátdehydrogenasa MeSH
- fytochrom A MeSH
- PIF1 protein, Arabidopsis MeSH Prohlížeč
- polyaminy MeSH
- proteiny huseníčku MeSH
- PUT2 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory bHLH MeSH
- transportní systémy aminokyselin MeSH
Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.
Department of Botany and Plant Biology University of Geneva Geneva Switzerland
Institute of Genetics and Genomics in Geneva University of Geneva Geneva Switzerland
Zobrazit více v PubMed
El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. United States; 2008;3: 175–182. PubMed PMC
Chahtane H, Kim W, Lopez-Molina L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot. England; 2017;68: 857–869. 10.1093/jxb/erw377 PubMed DOI
Mene-Saffrane L, Jones AD, DellaPenna D. Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci U S A. United States; 2010;107: 17815–17820. 10.1073/pnas.1006971107 PubMed DOI PMC
De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mene-Saffrane L, et al. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet. United States; 2015;11: e1005708 10.1371/journal.pgen.1005708 PubMed DOI PMC
Loubery S, De Giorgi J, Utz-Pugin A, Demonsais L, Lopez-Molina L. A Maternally Deposited Endosperm Cuticle Contributes to the Physiological Defects of transparent testa Seeds. Plant Physiol. United States; 2018;177: 1218–1233. 10.1104/pp.18.00416 PubMed DOI PMC
Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol. England; 2015;427: 3389–3406. 10.1016/j.jmb.2015.06.020 PubMed DOI
Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: essential factors for growth and survival. Planta. Germany; 2008;228: 367–381. 10.1007/s00425-008-0772-7 PubMed DOI
Tiburcio AF, Altabella T, Bitrian M, Alcazar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. Germany; 2014;240: 1–18. 10.1007/s00425-014-2055-9 PubMed DOI
Drolet G, Dumbroff EB, Legge RL, Thompson JE. Radical scavenging properties of polyamines. Phytochemistry. 1986;25: 367–371. 10.1016/S0031-9422(00)85482-5 DOI
Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RAJ. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. United States; 1998;95: 11140–11145. PubMed PMC
Verma S, Mishra SN. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol. Germany; 2005;162: 669–677. 10.1016/j.jplph.2004.08.008 PubMed DOI
Gupta K, Dey A, Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol Plant. 2013;35: 2015–2036. 10.1007/s11738-013-1239-4 DOI
Liu J-H, Wang W, Wu H, Gong X, Moriguchi T. Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci. Switzerland; 2015;6: 827 10.3389/fpls.2015.00827 PubMed DOI PMC
de Wit M, Galvao VC, Fankhauser C. Light-Mediated Hormonal Regulation of Plant Growth and Development. Annu Rev Plant Biol. United States; 2016;67: 513–537. 10.1146/annurev-arplant-043015-112252 PubMed DOI
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol. United States; 2008;59: 281–311. 10.1146/annurev.arplant.59.032607.092859 PubMed DOI
Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. UNITED STATES; 1996;93: 8129–8133. PubMed PMC
Lee KP, Piskurewicz U, Turečková V, Carat S, Chappuis R, Strnad M, et al. Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev. 2012;26: 1984–1996. 10.1101/gad.194266.112 PubMed DOI PMC
Ibarra SE, Auge G, Sanchez RA, Botto JF. Transcriptional programs related to phytochrome A function in Arabidopsis seed germination. Mol Plant. England; 2013;6: 1261–1273. 10.1093/mp/sst001 PubMed DOI
SCOPEL AL, BALLARÉ CL, SÁNCHEZ RA. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ. 14: 501–508. 10.1111/j.1365-3040.1991.tb01520.x DOI
Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. England; 2006;45: 804–818. 10.1111/j.1365-313X.2005.02642.x PubMed DOI
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. United States; 2003;15: 1591–1604. PubMed PMC
Piskurewicz U, Tureckova V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J. England; 2009;28: 2259–2271. 10.1038/emboj.2009.170 PubMed DOI PMC
Oh E, Kim J, Park E, Kim J-I, Kang C, Choi G. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell. United States; 2004;16: 3045–3058. 10.1105/tpc.104.025163 PubMed DOI PMC
Li J, Mu J, Bai J, Fu F, Zou T, An F, et al. Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol. United States; 2013;162: 470–483. 10.1104/pp.113.213892 PubMed DOI PMC
Dong S, Hu H, Wang Y, Xu Z, Zha Y, Cai X, et al. A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana. J Plant Res. Japan; 2016;129: 899–907. 10.1007/s10265-016-0819-y PubMed DOI
Jack DL, Paulsen IT, Saier MH. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology. England; 2000;146 (Pt 8: 1797–1814. 10.1099/00221287-146-8-1797 PubMed DOI
Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, Urano K, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci U S A. United States; 2012;109: 6343–6347. 10.1073/pnas.1121406109 PubMed DOI PMC
Fujita M, Shinozaki K. Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol. Japan; 2014;55: 855–861. 10.1093/pcp/pcu032 PubMed DOI
Mulangi V, Chibucos MC, Phuntumart V, Morris PF. Kinetic and phylogenetic analysis of plant polyamine uptake transporters. Planta. Germany; 2012;236: 1261–1273. 10.1007/s00425-012-1668-0 PubMed DOI
Shen Y, Ruan Q, Chai H, Yuan Y, Yang W, Chen J, et al. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability. Plant J. England; 2016;88: 1006–1021. 10.1111/tpj.13310 PubMed DOI
Urano K, Hobo T, Shinozaki K. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett. England; 2005;579: 1557–1564. 10.1016/j.febslet.2005.01.048 PubMed DOI
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, et al. Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol. United States; 2004;135: 1565–1573. 10.1104/pp.104.041699 PubMed DOI PMC
Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, et al. Spermine is not essential for survival of Arabidopsis. FEBS Lett. England; 2004;556: 148–152. PubMed
Tavladoraki P, Cona A, Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front Plant Sci. Switzerland; 2016;7: 824 10.3389/fpls.2016.00824 PubMed DOI PMC
Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, et al. Polyamine Oxidase5 Regulates Arabidopsis Growth through Thermospermine Oxidase Activity. Plant Physiol. United States; 2014;165: 1575–1590. 10.1104/pp.114.242610 PubMed DOI PMC
Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. Japan; 2008;49: 1272–1282. 10.1093/pcp/pcn114 PubMed DOI
Sagor GHM, Zhang S, Kojima S, Simm S, Berberich T, Kusano T. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression. Front Plant Sci. Switzerland; 2016;7: 214 10.3389/fpls.2016.00214 PubMed DOI PMC
Groot SPC, Surki AA, de Vos RCH, Kodde J. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions. Ann Bot. England; 2012;110: 1149–1159. 10.1093/aob/mcs198 PubMed DOI PMC
Groot SPC, de Groot L, Kodde J, van Treuren R. Prolonging the longevity of ex situ conserved seeds by storage under anoxia. Plant Genet Resour. 2014/04/11. Cambridge University Press; 2015;13: 18–26. 10.1017/S1479262114000586 DOI
Nguyen T-P, Cueff G, Hegedus DD, Rajjou L, Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot. England; 2015;66: 6399–6413. 10.1093/jxb/erv348 PubMed DOI PMC
Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol. United States; 2008;148: 620–641. 10.1104/pp.108.123141 PubMed DOI PMC
Majee M, Kumar S, Kathare PK, Wu S, Gingerich D, Nayak NR, et al. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proc Natl Acad Sci U S A. United States; 2018;115: E4120–E4129. 10.1073/pnas.1711919115 PubMed DOI PMC
Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W Il, Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 2006;47: 124–139. 10.1111/j.1365-313X.2006.02773.x PubMed DOI
Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell. United States; 2009;21: 403–419. 10.1105/tpc.108.064691 PubMed DOI PMC
Ahmed S, Ariyaratne M, Patel J, Howard AE, Kalinoski A, Phuntumart V, et al. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. Plant Sci. Ireland; 2017;258: 146–155. 10.1016/j.plantsci.2016.12.002 PubMed DOI
Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol. United States; 2002;20: 613–618. 10.1038/nbt0602-613 PubMed DOI
Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, et al. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. Japan; 2006;47: 346–354. 10.1093/pcp/pci252 PubMed DOI
Sobieszczuk-Nowicka E. Polyamine catabolism adds fuel to leaf senescence. Amino Acids. Austria; 2017;49: 49–56. 10.1007/s00726-016-2377-y PubMed DOI PMC
Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci. Switzerland; 2013;4: 63 10.3389/fpls.2013.00063 PubMed DOI PMC
Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, et al. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett. Netherlands; 2006;28: 1867–1876. 10.1007/s10529-006-9179-3 PubMed DOI
Khajuria A, Sharma N, Bhardwaj R, Ohri P. Emerging Role of Polyamines in Plant Stress Tolerance. Curr Protein Pept Sci. United Arab Emirates; 2018;19: 1114–1123. 10.2174/1389203719666180718124211 PubMed DOI
Jiang Z, Xu G, Jing Y, Tang W, Lin R. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat Commun. England; 2016;7: 12377 10.1038/ncomms12377 PubMed DOI PMC
Sanchez-Lamas M, Lorenzo CD, Cerdan PD. Bottom-up Assembly of the Phytochrome Network. PLoS Genet. United States; 2016;12: e1006413 10.1371/journal.pgen.1006413 PubMed DOI PMC
Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. United States; 2015;13: e1002128 10.1371/journal.pbio.1002128 PubMed DOI PMC
Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci U S A. United States; 2014;111: 8547–8552. 10.1073/pnas.1402275111 PubMed DOI PMC
Belin C, Megies C, Hauserova E, Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell. United States; 2009;21: 2253–2268. 10.1105/tpc.109.067702 PubMed DOI PMC
Lopez-Molina L, Chua NH. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. JAPAN; 2000;41: 541–547. PubMed
Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R, Nicotra CM. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl. Netherlands; 2000;745: 431–437. PubMed
Berberich T, Sagor GHM, Kusano T. Abiotic Stress Phenotyping of Polyamine Mutants. Methods Mol Biol. United States; 2018;1694: 389–403. 10.1007/978-1-4939-7398-9_32 PubMed DOI
Doke N. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol. 1983;23: 359–367. 10.1016/0048-4059(83)90020-6 DOI
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell. United States; 2008;20: 2729–2745. 10.1105/tpc.108.061515 PubMed DOI PMC