Investigation of Dissolution Mechanism and Release Kinetics of Poorly Water-Soluble Tadalafil from Amorphous Solid Dispersions Prepared by Various Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.2.16/3.1.00/24501
Operational Programme Prague-Competitiveness
NPU I LO1613 MSMT-43760/2015
National Program of Sustainability
PubMed
31382377
PubMed Central
PMC6722951
DOI
10.3390/pharmaceutics11080383
PII: pharmaceutics11080383
Knihovny.cz E-zdroje
- Klíčová slova
- Weibull dissolution model, Wood’s apparatus, dissolution rate, intrinsic dissolution rate, solid dispersion, tadalafil,
- Publikační typ
- časopisecké články MeSH
The aims of this study were to investigate how the release of tadalafil is influenced by two grades of polyvinylpyrrolidone (Kollidon® 12 PF and Kollidon® VA 64) and various methods of preparing solid dispersions (solvent evaporation, spray drying and hot-melt extrusion). Tadalafil is poorly water-soluble and its high melting point makes it very sensitive to the solid dispersion preparation method. Therefore, the objectives were to make a comparative evaluation among different solid dispersions and to assess the effect of the physicochemical nature of solid dispersions on the drug release profile with respect to the erosion-diffusion mechanism. The solid dispersions were evaluated for dissolution profiles, XRD, SEM, FT-IR, DSC, and solubility or stability studies. It was found that tadalafil release was influenced by polymer molecular weight. Therefore, solid dispersions containing Kollidon® 12 PF showed a faster dissolution rate compared to Kollidon® VA 64. Tadalafil was released from solid dispersions containing Kollidon® 12 PF because of the combination of erosion and diffusion mechanisms. The diffusion mechanisms were predominant in the initial phase of the experiment and the slow erosion was dissolution-controlling at the second stage of the dissolution. On the contrary, the tadalafil release rate from solid dispersions containing Kollidon® VA 64 was controlled solely by the erosion mechanism.
Zobrazit více v PubMed
Tres F., Treacher K., Booth J., Hughes L.P., Wren S.A.C., Aylott J.W., Burley J.C. Real time Raman imaging to understand dissolution performance of amorphous solid dispersions. J. Control. Release. 2014;188:53–60. doi: 10.1016/j.jconrel.2014.05.061. PubMed DOI
Davis M., Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J. Control. Release. 2018;269:110–127. doi: 10.1016/j.jconrel.2017.11.005. PubMed DOI
Wlodarski K., Sawicki W., Haber K., Knapik J., Wojnarowska Z., Paluch M., Lepek P., Hawelek L., Tajber L. Physicochemical properties of tadalafil solid dispersions—Impact of polymer on the apparent solubility and dissolution rate of tadalafil. Eur. J. Pharm. Biopharm. 2015;94:106–115. doi: 10.1016/j.ejpb.2015.04.031. PubMed DOI
Craig D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002;231:131–144. doi: 10.1016/S0378-5173(01)00891-2. PubMed DOI
Vyas V., Sancheti P., Karekar P., Shah M., Pore Y. Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407. Acta Pharm. 2009;59:453–461. doi: 10.2478/v10007-009-0037-4. PubMed DOI
Wlodarski K., Sawicki W., Kozyra A., Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA. Eur. J. Pharm. Biopharm. 2015;96:237–246. doi: 10.1016/j.ejpb.2015.07.026. PubMed DOI
Huang Y., Dai W.-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B. 2014;4:18–25. doi: 10.1016/j.apsb.2013.11.001. PubMed DOI PMC
Prasanna T.V., Rani B.N., Rao A.S., Murthy T.E.G.K. Design and evaluation of solid dispersed tadalafil tablets. Int. J. Pharm. Sci. Res. 2012;3:4738–4744. doi: 10.13040/IJPSR.0975-8232.3(12).4738-44. DOI
Rane Y., Mashru R., Sankalia M., Sankalia J. Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech. 2007;8:E1–E11. doi: 10.1208/pt0802027. PubMed DOI PMC
Sharma P.K., Sharma P., Darwhekar G.N., Shrivastava B. Formulation and evaluation of solid dispersion of tadalafil. Int. J. Drug Regul. Aff. 2018;6:26–34. doi: 10.22270/ijdra.v6i1.224. DOI
Mande P.P., Bachhav S.S., Devarajan P.V. Bioenhanced advanced third generation solid dispersion of tadalafil: Repurposing with improved therapy in pyelonephritis. Asian J. Pharm. Sci. 2017;12:569–579. doi: 10.1016/j.ajps.2017.07.001. PubMed DOI PMC
Choi J.S., Kwon S.H., Lee S.E., Jang W.S., Byeon J.C., Jeong H.M., Park J.S. Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int. J. Pharm. 2017;526:77–87. doi: 10.1016/j.ijpharm.2017.04.056. PubMed DOI
Obeidat W.M., Sallam A.S. Evaluation of tadalafil nanosuspensions and their PEG solid dispersion matrices for enhancing its dissolution properties. AAPS PharmSciTech. 2014;15:364–374. doi: 10.1208/s12249-013-0070-y. PubMed DOI PMC
Park J., Cho W., Kang H., Lee B.B.J., Kim T.S., Hwang S.-J. Effect of operating parameters on PVP/tadalafil solid dispersions prepared using supercritical anti-solvent process. J. Supercrit. Fluids. 2014;90:126–133. doi: 10.1016/j.supflu.2014.04.001. DOI
Krupa A., Cantin O., Strach B., Wyska E., Tabor Z., Siepmann J., Wróbel A., Jachowicz R. In vitro and in vivo behavior of ground tadalafil hot-melt extrudates: How the carrier material can effectively assure rapid or controlled drug release. Int. J. Pharm. 2017;528:498–510. doi: 10.1016/j.ijpharm.2017.05.057. PubMed DOI
Wlodarski K., Sawicki W., Paluch K.J., Tajber L., Grembecka M., Hawelek L., Wojnarowska Z., Grzybowska K., Talik E., Paluch M. The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil. Eur. J. Pharm. Sci. 2014;62:132–140. doi: 10.1016/j.ejps.2014.05.026. PubMed DOI
Mehanna M.M., Motawaa A.M., Samaha M.W. In sight into tadalafil-block copolymer binary solid dispersion: Mechanistic investigation of dissolution enhancement. Int. J. Pharm. 2010;402:78–88. doi: 10.1016/j.ijpharm.2010.09.024. PubMed DOI
Refaat A., Sokar M., Ismail F., Boraei N. Tadalafil oral disintegrating tablets: An approach to enhance tadalafil dissolution. J. Pharm. Investig. 2015;45:481–491. doi: 10.1007/s40005-015-0196-x. DOI
Choi J.S., Park J.S. Design of PVP/VA S-630 based tadalafil solid dispersion to enhance the dissolution rate. Eur. J. Pharm. Sci. 2017;97:269–276. doi: 10.1016/j.ejps.2016.11.030. PubMed DOI
Choi J.S., Lee S.E., Jang W.S., Byeon J.C., Park J.S. Tadalafil solid dispersion formulations based on PVP/VA S-630: Improving oral bioavailability in rats. Eur. J. Pharm. Sci. 2017;106:152–158. doi: 10.1016/j.ejps.2017.05.065. PubMed DOI
El-Badry M., Hag N., Fetih G., Shakeel F. Solubility and dissolution enhancement of tadalafil using self-nanoemulsifying drug delivery system. J. Oleo Sci. 2014;63:567–576. doi: 10.5650/jos.ess13236. PubMed DOI
Baek J.S., Pham C.V., Myung C.S., Cho C.W. Tadalafil-loaded nanostructured lipid carriers using permeation enhancers. Int. J. Pharm. 2015;495:701–709. doi: 10.1016/j.ijpharm.2015.09.054. PubMed DOI
Bhokare P.L., Kendre P.N., Pande V.V. Design and characterization of nanocrystals of tadalafil for solubility and dissolution rate enhancement. Inventi Impact Pharm. Process Dev. 2015;2015:1–7.
Badr-Eldin S.M., Elkheshen S.A., Ghorab M.M. Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. Eur. J. Pharm. Biopharm. 2008;70:819–827. doi: 10.1016/j.ejpb.2008.06.024. PubMed DOI
Mehanna M.M., Motawaa A.M., Samaha M.W. Tadalafil inclusion in microporous silica as effective dissolution enhancer: Optimization of loading procedure and molecular state characterization. J. Pharm. Sci. 2010;100:1805–1818. doi: 10.1002/jps.22420. PubMed DOI
Wlodarski K., Tajber L., Sawicki W. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA. Eur. J. Pharm. Biopharm. 2016;109:14–23. doi: 10.1016/j.ejpb.2016.09.011. PubMed DOI
Krupa A., Descamps M., Willart J.-F., Jachowicz R., Danède F. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil. Eur. J. Pharm. Sci. 2016;95:130–137. doi: 10.1016/j.ejps.2016.05.007. PubMed DOI
Nowak P., Krupa A., Kubat K., Węgrzyn A., Harańczyk H., Ciułkowska A., Jachowicz R. Water vapour sorption in tadalafil-Soluplus co-milled amorphous solid dispersions. Powder Technol. 2019;346:373–384. doi: 10.1016/j.powtec.2019.02.010. DOI
Reza M.S., Quadir M.A., Haider S.S. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J. Pharm. Pharm. Sci. 2003;6:282–291. PubMed
Caccavo D., Cascone S., Lamberti G., Barba A.A., Larsson A. Swellable hydrogel-based systems for controlled drug delivery. In: Sezer A.D., editor. Smart Drug Delivery System. IntechOpen; London, UK: 2016. pp. 237–303. DOI
Ozeki T., Yuasa H., Kanaya Y. Controlled release from solid dispersion composed of poly (ethylene oxide) —Carbopol® interpolymer complex with various cross-linking degrees of Carbopol®. J. Control. Release. 2000;63:287–295. doi: 10.1016/S0168-3659(99)00202-3. PubMed DOI
Grassi M., Colombo I., Lapasin R. Drug release from an ensemble of swellable crosslinked polymer particles. J. Control. Release. 2000;68:97–113. doi: 10.1016/S0168-3659(00)00241-8. PubMed DOI
Gajdošová M., Pěček D., Sarvašová N., Grof Z., Štěpánek F. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging. Int. J. Pharm. 2016;500:136–143. doi: 10.1016/j.ijpharm.2016.01.023. PubMed DOI
Vueba M.L., Batista de Carvalho L.A.E., Veiga F., Sousa J.J., Pina M.E. In vitro release of ketoprofen from hydrophilic matrix tablets containing cellulose polymer mixtures. Drug Dev. Ind. Pharm. 2012;39:1651–1662. doi: 10.3109/03639045.2012.729146. PubMed DOI
Maderuelo C., Zarzuelo A., Lanao J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 2011;154:2–19. doi: 10.1016/j.jconrel.2011.04.002. PubMed DOI
Wan L.S.C., Heng P.W.S., Wong L.F. Relationship between swelling and drug release in a hydrophilic matrix. Drug. Dev. Ind. Pharm. 1993;19:1201–1210. doi: 10.3109/03639049309063012. DOI
Lamoudi L., Chaumeil J.C., Daoud K. Swelling, erosion and drug release characteristics of Sodium Diclofenac from heterogeneous matrix tablets. J. Drug Deliv. Sci. Technol. 2016;31:93–100. doi: 10.1016/j.jddst.2015.12.005. DOI
Sujja-areevath J., Munday D.L., Cox P.J., Khan K.A. Relationship between swelling, erosion and drug release in hydrophilic natural gum mini-matrix formulations. Eur. J. Pharm. Sci. 1998;6:207–217. doi: 10.1016/S0928-0987(97)00072-9. PubMed DOI
Colombo P., Bettini R., Santi P., De Ascentiis A., Peppas N.A. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J. Control. Release. 1996;39:231–237. doi: 10.1016/0168-3659(95)00158-1. DOI
Colombo P., Bettini R., Peppas N.A. Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug. J. Control. Release. 1999;61:83–91. doi: 10.1016/S0168-3659(99)00104-2. PubMed DOI
Colombo P., Bettini R., Massimo G., Catellani P.L., Santi P., Peppas N.A. Drug diffusion front movement is important in drug release control from swellable matrix tablets. J. Pharm. Sci. 1995;84:991–997. doi: 10.1002/jps.2600840816. PubMed DOI
Lamberti G., Galdi I., Barba A.A. Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. Int. J. Pharm. 2011;407:78–86. doi: 10.1016/j.ijpharm.2011.01.023. PubMed DOI
Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) Adv. Drug Deliv. Rev. 2001;48:139–157. doi: 10.1016/S0169-409X(01)00112-0. PubMed DOI
Wu N., Wang L.-S., Tan D.C.-W., Moochhala S.M., Yang Y.-Y. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: Polyethylene oxide with high molecular weights. J. Control. Release. 2005;102:569–581. doi: 10.1016/j.jconrel.2004.11.002. PubMed DOI
Chavanpatil M.D., Jain P., Chaudhari S., Shear R., Vavia P.R. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int. J. Pharm. 2006;316:86–92. doi: 10.1016/j.ijpharm.2006.02.038. PubMed DOI
Colombo P., Bettini R., Santi P., Peppas N.A. Swellable matrices for controlled drug delivery: Gel-layer behaviour, mechanisms and optimal performance. Pharm. Sci. Technol. Today. 2000;3:198–204. doi: 10.1016/S1461-5347(00)00269-8. PubMed DOI
Punčochová K., Heng J.Y.Y., Beránek J., Štěpánek F. Investigation of drug-polymer interaction in solid dispersions by vapour sorption methods. Int. J. Pharm. 2014;469:159–167. doi: 10.1016/j.ijpharm.2014.04.048. PubMed DOI
Zámostný P., Petrů J., Majerová D. Effect of maize starch excipient properties on drug release rate. Procedia Eng. 2012;42:482–488. doi: 10.1016/j.proeng.2012.07.439. DOI
Ford J.L. The current status of solid dispersions. Pharm. Acta Helv. 1986;61:69–88. PubMed
Vo C.L.-N., Park C., Lee B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013;85:799–813. doi: 10.1016/j.ejpb.2013.09.007. PubMed DOI
Thielmann F., Williams D. Determination of the glass transition temperature of maltose and its dependence on relative humidity by inverse gas chromatography. Dtsch. Lebensm.-Rundsch. 2000;96:255–257.
Hurley D., Potter C.B., Walker G.M., Higginbotham C.L. Investigation of ethylene oxide-co-propylene oxide for dissolution enhancement of hot-melt extruded solid dispersions. J. Pharm. Sci. 2018;107:1372–1382. doi: 10.1016/j.xphs.2018.01.016. PubMed DOI
Ghadge O., Samant M., Khale A. Determination of solubility of tadalafil by shake flask method by employing validated HPLC analytical method. World J. Pharm. Res. 2015;4:1370–1382.
Petru J., Zamostny P. Analysis of drug release from different agglomerates using a mathematical model. Dissolut. Technol. 2014;21:40–47. doi: 10.14227/DT210414P40. DOI
Petru J., Zamostny P. Prediction of dissolution behavior of final dosage forms prepared by different granulation methods. Procedia Eng. 2012;42:1463–1473. doi: 10.1016/j.proeng.2012.07.539. DOI
Li N., Taylor L.S. Tailoring supersaturation from amorphous solid dispersions. J. Control. Release. 2018;279:114–125. doi: 10.1016/j.jconrel.2018.04.014. PubMed DOI PMC
Shoaib M.H., Tazeen J., Merchant H.A., Yousuf R.I. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci. 2006;19:119–124. PubMed
Khan N., Craig D.Q.M. The influence of drug incorporation on the structure and release properties of solid dispersions in lipid matrices. J. Control. Release. 2003;93:355–368. doi: 10.1016/j.jconrel.2003.09.006. PubMed DOI
Zuleger S., Lippold B.C. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. Int. J. Pharm. 2001;217:139–152. doi: 10.1016/S0378-5173(01)00596-8. PubMed DOI
Borgquist P., Körner A., Piculell L., Larsson A., Axelsson A. A model for the drug release from a polymer matrix tablet-effects of swelling and dissolution. J. Control. Release. 2006;113:216–225. doi: 10.1016/j.jconrel.2006.05.004. PubMed DOI
Katzhendler I., Hoffman A., Goldberger A., Friedman M. Modeling of drug release from erodible tablets. J. Pharm. Sci. 1997;86:110–115. doi: 10.1021/js9600538. PubMed DOI
Chirico S., Dalmoro A., Lamberti G., Russo G., Titomanlio G. Analysis and modeling of swelling and erosion behavior for pure HPMC tablet. J. Control. Release. 2007;122:181–188. doi: 10.1016/j.jconrel.2007.07.001. PubMed DOI
Costa P., Lobo J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI
Zamostny P., Belohlav Z. A software for regression analysis of kinetic data. Comput. Chem. 1999;23:479–485. doi: 10.1016/S0097-8485(99)00024-8. DOI