Development of an Image-based Method for Tablet Microstructure Description and Its Correlation with API Release Rate
Language English Country United States Media electronic
Document type Journal Article
Grant support
CZ.02.2.67/0.0/0.0/18_057/0013355
Ministerstvo Školství, Mládeže a Tělovýchovy
A2_FCHT_2023_034
Vysoká Škola Chemicko-technologická v Praze
PubMed
37783877
DOI
10.1208/s12249-023-02658-w
PII: 10.1208/s12249-023-02658-w
Knihovny.cz E-resources
- Keywords
- SEM image analysis, USP4 dissolution, deformability, flow-through dissolution, tablet microstructure,
- MeSH
- Models, Biological * MeSH
- Ibuprofen chemistry MeSH
- Excipients * chemistry MeSH
- Drug Compounding MeSH
- Tablets chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ibuprofen MeSH
- Excipients * MeSH
- Tablets MeSH
The performance of a pharmaceutical formulation, such as the drug (API) release rate, is significantly influenced by the properties of the materials used, the composition of the final product and the tablet compression process parameters. However, in some cases, the knowledge of these input parameters does not necessarily provide a reliable description or prediction of tablet performance. Therefore, the knowledge of tablet microstructure is desirable to understand such formulations. Commonly used analytical techniques, such as X-ray tomography and intrusion mercury porosimetry, are not widely used in pharmaceutical companies due to their price and/or toxicity, and therefore, efforts are made to develop a tool for fast and easy microstructure description. In this work, we have developed an image-based method for microstructure description and applied it to a model system consisting of ibuprofen and CaHPO4∙2H2O (API and excipient with different deformability). The obtained parameter, the quadratic mean of the equivalent diameter of the non-deformable, brittle excipient CaHPO4∙2H2O, was correlated with tablet composition, compression pressure and API release rate. The obtained results demonstrate the possibility of describing the tablet dissolution performance in the presented model system based on the microstructural parameter, providing a possible model system for compressed solid dosage forms in which a plastic component is present and specific API release is required.
See more in PubMed
Zhang S, Stroud PA, Zhu A, Johnson MJ, Lomeo J, Burcham CL, et al. Characterizing the impact of spray dried particle morphology on tablet dissolution using quantitative X-ray microscopy. Eur J Pharm Sci. 2021;165:105921. https://doi.org/10.1016/j.ejps.2021.105921 . PubMed DOI
Fichtner F, Rasmuson Å, Alderborn G. Particle size distribution and evolution in tablet structure during and after compaction. Int J Pharm. 2005;292(1):211–25. https://doi.org/10.1016/j.ijpharm.2004.12.003 . PubMed DOI
Sinka IC, Motazedian F, Cocks ACF, Pitt KG. The effect of processing parameters on pharmaceutical tablet properties. Powder Technol. 2009;189(2):276–84. https://doi.org/10.1016/j.powtec.2008.04.020 . DOI
Markl D, Strobel A, Schlossnikl R, Botker J, Bawuah P, Ridgway C, et al. Characterisation of pore structures of pharmaceutical tablets: a review. Int J Pharm. 2018;538(1–2):188–214. https://doi.org/10.1016/j.ijpharm.2018.01.017 . PubMed DOI
Schomberg AK, Diener A, Wünsch I, Finke JH, Kwade A. The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: potentials and comparison to common physical methods. Int J Pharm: X. 2021;3:100090. https://doi.org/10.1016/j.ijpx.2021.100090 . PubMed DOI
Gupta S, Omar T, Muzzio FJ. SEM/EDX and Raman chemical imaging of pharmaceutical tablets: a comparison of tablet surface preparation and analysis methods. Int J Pharm. 2022;611:121331. https://doi.org/10.1016/j.ijpharm.2021.121331 . PubMed DOI
Paul S, Sun CC. Dependence of friability on tablet mechanical properties and a predictive approach for binary mixtures. Pharm Res. 2017;34(12):2901–9. https://doi.org/10.1007/s11095-017-2273-5 . PubMed DOI
Sun CC. Microstructure of tablet—pharmaceutical significance, assessment, and engineering. Pharm Res. 2017;34(5):918–28. https://doi.org/10.1007/s11095-016-1989-y . PubMed DOI
Petrů J, Zámostný P. Analysis of drug release from different agglomerates using a mathematical model. Dissolution Technol. 2014;21(4):40–7. DOI
Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst. 2006;23(1):1–65. https://doi.org/10.1615/critrevtherdrugcarriersyst.v23.i1.10 . PubMed DOI
Tanner T, Antikainen O, Ehlers H, Yliruusi J. Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders. Int J Pharm. 2017;526(1):31–40. https://doi.org/10.1016/j.ijpharm.2017.04.039 . PubMed DOI
Antikainen O, Yliruusi J. Determining the compression behaviour of pharmaceutical powders from the force–distance compression profile. Int J Pharm. 2003;252(1):253–61. https://doi.org/10.1016/S0378-5173(02)00665-8 . PubMed DOI
Skelbæk-Pedersen AL, Vilhelmsen TK, Wallaert V, Rantanen J. Investigation of the effects of particle size on fragmentation during tableting. Int J Pharm. 2020;576:118985. https://doi.org/10.1016/j.ijpharm.2019.118985 . PubMed DOI
Zámostný P, Drahozal M, Švehla O, Römerová S, Marinko N. Drug release from carrier systems comprising meloxicam crystals formed by impregnation-evaporation. Crystals. 2023;13(3):527. DOI
Šimek M, Grünwaldová V, Kratochvíl B. Hot-stage microscopy for determination of API fragmentation: comparison with other methods. Pharm Dev Technol. 2016;21(5):583–9. https://doi.org/10.3109/10837450.2015.1026608 . PubMed DOI
Penkavova V, Kulaviak L, Ruzicka MC, Puncochar M, Grof Z, Stepanek F, et al. Compression of anisometric granular materials. Powder Technol. 2019;342:887–98. https://doi.org/10.1016/j.powtec.2018.10.031 . DOI
Penkavova V, Kulaviak L, Ruzicka MC, Puncochar M, Zamostny P. Breakage of anisometric rod-shaped particles. Part Sci Technol. 2018;36(4):432–7. https://doi.org/10.1080/02726351.2017.1347969 . DOI
Khorasani M, Amigo JM, Sonnergaard J, Olsen P, Bertelsen P, Rantanen J. Visualization and prediction of porosity in roller compacted ribbons with near-infrared chemical imaging (NIR-CI). J Pharm Biomed Anal. 2015;109:11–7. https://doi.org/10.1016/j.jpba.2015.02.008 . PubMed DOI
Jia W, Yawman PD, Pandya KM, Sluga K, Ng T, Kou D, et al. Assessing the interrelationship of microstructure, properties, drug release performance, and preparation process for amorphous solid dispersions via noninvasive imaging analytics and material characterization. Pharm Res. 2022. https://doi.org/10.1007/s11095-022-03308-9 . PubMed DOI PMC
Zhu A, Mao C, Luner PE, Lomeo J, So C, Marchal S, et al. Investigation of quantitative X-ray microscopy for assessment of API and excipient microstructure evolution in solid dosage processing. AAPS PharmSciTech. 2022;23(5):117. https://doi.org/10.1208/s12249-022-02271-3 . PubMed DOI
Gioumouxouzis CI, Katsamenis OL, Fatouros DG. X-ray microfocus computed tomography: a powerful tool for structural and functional characterisation of 3D printed dosage forms. J Microsc. 2020;277(3):135–9. https://doi.org/10.1111/jmi.12798 . PubMed DOI
Zeng Q, Wang L, Wu S, Fang G, Liu H, Li Z, et al. Dissolution profiles prediction of sinomenine hydrochloride sustained-release tablets using Raman mapping technique. Int J Pharm. 2022;620:121743. https://doi.org/10.1016/j.ijpharm.2022.121743 . PubMed DOI
Gupta S, Igne B, Omar T, Román-Ospino AD, Hausner D, Muzzio F. Multi-layer Raman chemical mapping to investigate the effect of API particle size and blending shear rate on API domain sizes in pharmaceutical tablets. Int J Pharm. 2022;624:122052. https://doi.org/10.1016/j.ijpharm.2022.122052 . PubMed DOI
Carlton R. Image analysis of EDS and backscatter SEM images of pharmaceutical tablets. Microsc Microanal. 2010;16(S2):662–3. https://doi.org/10.1017/s1431927610061283 . DOI
Scoutaris N, Vithani K, Slipper I, Chowdhry B, Douroumis D. SEM/EDX and confocal Raman microscopy as complementary tools for the characterization of pharmaceutical tablets. Int J Pharm. 2014;470(1):88–98. https://doi.org/10.1016/j.ijpharm.2014.05.007 . PubMed DOI
Boetker JP, Savolainen M, Koradia V, Tian F, Rades T, Müllertz A, et al. Insights into the early dissolution events of amlodipine using UV imaging and Raman spectroscopy. Mol Pharm. 2011;8(4):1372–80. https://doi.org/10.1021/mp200205z . PubMed DOI
Slámová M, Školáková T, Školáková A, Patera J, Zámostný P. Preparation of solid dispersions with respect to the dissolution rate of active substance. J Drug Deliv Sci Technol. 2020;56:101518. https://doi.org/10.1016/j.jddst.2020.101518 . DOI
Školáková T, Slámová M, Školáková A, Kadeřábková A, Patera J, Zámostný P. Investigation of dissolution mechanism and release kinetics of poorly water-soluble tadalafil from amorphous solid dispersions prepared by various methods. Pharmaceutics. 2019;11(8):383. PubMed DOI PMC
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, et al. Recent advances in enhancement of dissolution and supersaturation of poorly water-soluble drug in amorphous pharmaceutical solids: a review. AAPS PharmSciTech. 2021;23(1):16. https://doi.org/10.1208/s12249-021-02137-0 . PubMed DOI
Partheniadis I, Toskas M, Stavras F-M, Menexes G, Nikolakakis I. Impact of Hot-melt-extrusion on solid-state properties of pharmaceutical polymers and classification using hierarchical cluster analysis. Processes. 2020;8(10):1208. DOI
Tanner T, Antikainen O, Ehlers H, Blanco D, Yliruusi J. Examining mechanical properties of various pharmaceutical excipients with the gravitation-based high-velocity compaction analysis method. Int J Pharm. 2018;539(1):131–8. https://doi.org/10.1016/j.ijpharm.2018.01.048 . PubMed DOI
Šimek M, Grünwaldová V, Kratochvíl B. A new way of solid dosage form samples preparation for SEM and FTIR using microtome. Pharm Dev Technol. 2014;19(4):411–6. https://doi.org/10.3109/10837450.2013.788515 . PubMed DOI
Slámová M, Prausová K, Epikaridisová J, Brokešová J, Kuentz M, Patera J, et al. Effect of co-milling on dissolution rate of poorly soluble drugs. Int J Pharm. 2021;597:120312. https://doi.org/10.1016/j.ijpharm.2021.120312 . PubMed DOI
Wood JH, Syarto JE, Letterman H. Improved holder for intrinsic dissolution rate studies. J Pharm Sci. 1965;54(7):1068. https://doi.org/10.1002/jps.2600540730 . PubMed DOI
Bergström CAS, Box K, Holm R, Matthews W, McAllister M, Müllertz A, et al. Biorelevant intrinsic dissolution profiling in early drug development: fundamental, methodological, and industrial aspects. Eur J Pharm Biopharm. 2019;139:101–14. https://doi.org/10.1016/j.ejpb.2019.03.011 . PubMed DOI
Parrott EL, Wurster DE, Higuchi T. Investigation of drug release from solids*. I. Some factors influencing the dissolution rate. J Am Pharm Assoc (Scientific ed). 1955;44(5):269–73. https://doi.org/10.1002/jps.3030440505 . DOI
Tomas J, Dvořák J, Dammer O, Štěpánek F. Frequency analysis of stress relaxation patterns reveals the effect of formulation and process history on tablet disintegration. Powder Technol. 2021;379:438–46. https://doi.org/10.1016/j.powtec.2020.10.081 . DOI