Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome

. 2019 ; 14 (8) : e0220377. [epub] 20190812

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31404079

BACKGROUND: Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome-the Hereditary Hypertriglyceridaemic rats (HHTg). METHODS: Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). RESULTS: Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). CONCLUSION: Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.

Zobrazit více v PubMed

Chiva-Blanch G, Badimon L. Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. Oxid Med Cell Longev 2017; 2017:5812401 10.1155/2017/5812401 PubMed DOI PMC

Vinayagam R, Xu B: Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015;12:60 10.1186/s12986-015-0057-7 PubMed DOI PMC

Murillo AG, Fernandez ML: The Relevance of Dietary Polyphenols in Cardiovascular Protection. Curr Pharm Des 2017;23:2444–2452. 10.2174/1381612823666170329144307 PubMed DOI

Gomes WF, Tiwari BK, Rodriguez O, de Brito ES, Fernandes FAN, Rodrigues S: Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chem 2017;218:261–268. 10.1016/j.foodchem.2016.08.132 PubMed DOI

Yang HJ, Lim JH, Park KJ, Kang S, Kim DS, Park S: Methyl jasmolate treated buckwheat sprout powder enhances glucose metabolism by potentiating hepatic insulin signaling in estrogen-deficient rats. Nutrition 2016;32:129–137. 10.1016/j.nut.2015.07.012 PubMed DOI

Panat NA, Maurya DK, Ghaskadbi SS, Sandur SK: Troxerutin, a plant flavonoid, protect cells against oxidative stress-induced cell death through radical scavengigng mechanism. Food Chem 2016;194:32–45. 10.1016/j.foodchem.2015.07.078 PubMed DOI

Sampath S, Karundevi B: Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem 2014;395:11–27. 10.1007/s11010-014-2107-2 PubMed DOI

Azzi Z, Tang WL, Chong NJ, Tho LY: A systematicreview of the efficacy and tolerability of hydroxyethylrutosides for improvement of the signs and symptoms of chronic venous insufficiency. J Clin Pharm Ther 2015;40:177–85. 10.1111/jcpt.12247 PubMed DOI

Belcaro G, Dugall M, Luzzi R, Corsi M, Ledda A, Ricci A, et al.: Management of Varicose Veins and Chronic Venous Insufficiency in a Comparative Registry with Nine Venoactive Products in Comparison with Stockings. Int J Angiol 2017;26:170–178. 10.1055/s-0036-1597756 PubMed DOI PMC

Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha CV: Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice. Mol Cell Biochem 2014;387:123–134. 10.1007/s11010-013-1877-2 PubMed DOI

Rajagopalan G, Chandrasekaran SP, Venkatraman AC: Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart. Clin Exp Pharmacol Physiol 2017;44:103–113. 10.1111/1440-1681.12671 PubMed DOI

Zhang Z, Wang X, Zheng G, Shan Q, Lu J, Fan S, et al.: Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice. Int J Mol Sci 2016;18:E31 10.3390/ijms18010031 PubMed DOI PMC

Vrana A, Kazdova L: The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplant Proc 1990;22:2579 PubMed

Zicha J, Pechanova O, Cacanyiova S, Cebova M, Kristek F, Torok J, et al.: Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res 2006;55 Suppl 1:S49–63. 10.1042/CS20030078 PMID: 12816535 PubMed DOI

Malinska H, Skop V, Trnovska J, Markova I, Svoboda P, Kazdova L, et al.: Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol Res 2018;67:181–189. 10.33549/physiolres.933606 PubMed DOI

Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA, et al.: Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem 2002;277:48501–48507. 10.1074/jbc.M206655200 PubMed DOI

Malinska H, Huttl M, Oliyarnyk O, Bratova M, Kazdova L: Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 2015;31:1045–1051. 10.1016/j.nut.2015.03.011 PubMed DOI

Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, et al.: Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 2009;57:7731–7736. 10.1021/jf9012357 PubMed DOI

Geetha R, Sathiya Priya C, Anuradha CV: Troxerutin abrogates mitochondrial oxidative stress and myocardial apoptosis in mice fed calorie-rich diet. Chem Biol Interact 2017;278:74–83. 10.1016/j.cbi.2017.09.012 PubMed DOI

Lu J, Wu DM, Zheng ZH, Zheng YL, Hu B, Zhang ZF: Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 2011;134:783–797. 10.1093/brain/awq376 PubMed DOI

Divisova J, Kazdova L, Hubova M, Meschvisvili E: Relationship between insulin resistance and muscle triglycerides content in non-obese and obese experimental models of insulin resistance. Ann N Y Acad Sci 2002;967:440–445. PubMed

Szendroedi J, Yoshimura T, Phielix E, Koliak C, Marcucci M, Zhang D, et al.: Role of diacylglycerol activation of PKCτ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 2014;111:9597–602. 10.1073/pnas.1409229111 PubMed DOI PMC

Karnieli E, Armoni M: Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. Am J Physiol Endocrinol Metab 2008;295:E38–45. 10.1152/ajpendo.90306.2008 PubMed DOI

Mar-Heyming R, Miyazaki M, Weissglas-Volkov D, Kolaitis NA, Sadaat N, Plaisier C, et al.: Association of stearoyl-CoA desaturase 1 activity with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2008;28:1193–1199. 10.1161/ATVBAHA.107.160150 PubMed DOI PMC

Chatuphonprasert W, Kondo S, Jarukamjorn K, Kawasaki Y, Sakuma T, Nemoto N: Potent modification of inducible CYP1A1 expression by flavonoids. Biol Pharm Bull 2010;33:1698–1703. 10.1248/bpb.33.1698 PubMed DOI

Karakurt S: Modulatory effects of rutin on the expression of cytochrome P450s and antioxidant enzymes in human hepatoma cells. Acta Pharm 2016;66:491–502. 10.1515/acph-2016-0046 PubMed DOI

Uno T, Nakano R, Kitagawa R, Okada M, Kanamaru K, Takenaka S, et al.: Metabolism of steroids by cytochrome P450 2C9 variants. Biopharm Drug Dispos 2018;39:371–377. 10.1002/bdd.2153 PubMed DOI

Endo T, Samokhvalov V, Darwesh AM, Khey KMW, El-Sherbeni AA, Ei-Kadi AOS, et al.: DHA and 19,20-EDP induce lysosomal-proteolytic-dependent cytotoxicity through de novo ceramide production in H9c2 cells with a glycolytic profile. Cell Death Discov 2018;5:29 10.1028/s41420-018-0090-1 PMID: 30131878 PubMed DOI PMC

Oh JM, Choi JM, Yun KU, Oh JM, Kwak HC, Oh JG, et al.: Hepatic expression of cytochrome P450 in type 2 diabetic Goto-Kakizaki rats. Chem Biol Interact 2012;195:173–179. 10.1016/j.cbi.2011.12.010 PubMed DOI

Park SY, Kim CH, Lee JY, Jeon JS, Kim MJ, Chae SH, et al.: Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats. Food Chem Toxicol 2016;96:244–253. 10.1016/j.fct.2016.08.010 PubMed DOI

Cowart LA, Wei S, Hsu MH, Johson EF, Krishna MU, Falck JR, et al.: The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002;277:35105–35112. 10.1074/jbc.M201575200 PubMed DOI

Das A, Varma SS, Mularczyk C, Meling DD: Functional investigations of thromboxane synthase (CYP5A1) in lipid bilayers of nanodiscs. Chembiochem 2014;15:892–899. 10.1002/cbic.201300646 PubMed DOI

Voulgari C, Tentolouris N, Dilaveris P, Tousoulis D, Katsilambros N, Stefanadis C: Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J Am Coll Cardiol 2011;58:1343–1350. 10.1016/j.jacc.2011.04.047 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...