High-Dose Chemotherapy Compared With Standard Chemotherapy and Lung Radiation in Ewing Sarcoma With Pulmonary Metastases: Results of the European Ewing Tumour Working Initiative of National Groups, 99 Trial and EWING 2008
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, multicentrická studie, randomizované kontrolované studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U10 CA098413
NCI NIH HHS - United States
U10 CA098543
NCI NIH HHS - United States
U10 CA180886
NCI NIH HHS - United States
U10 CA180899
NCI NIH HHS - United States
PubMed
31553693
PubMed Central
PMC6881099
DOI
10.1200/jco.19.00915
Knihovny.cz E-zdroje
- MeSH
- adjuvantní radioterapie MeSH
- autologní transplantace MeSH
- časové faktory MeSH
- dítě MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- Ewingův sarkom mortalita sekundární terapie MeSH
- hodnocení rizik MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory kostí mortalita patologie terapie MeSH
- nádory plic mortalita sekundární terapie MeSH
- neoadjuvantní terapie * škodlivé účinky mortalita MeSH
- pneumektomie MeSH
- předškolní dítě MeSH
- progrese nemoci MeSH
- protokoly protinádorové kombinované chemoterapie aplikace a dávkování škodlivé účinky MeSH
- rizikové faktory MeSH
- transplantace hematopoetických kmenových buněk * škodlivé účinky mortalita MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Geografické názvy
- Evropa MeSH
PURPOSE: The R2Pulm trial was conducted to evaluate the effect of busulfan-melphalan high-dose chemotherapy with autologous stem-cell rescue (BuMel) without whole-lung irradiation (WLI) on event-free survival (main end point) and overall survival, compared with standard chemotherapy with WLI in Ewing sarcoma (ES) presenting with pulmonary and/or pleural metastases. METHODS: From 2000 to 2015, we enrolled patients younger than 50 years of age with newly diagnosed ES and with only pulmonary or pleural metastases. Patients received chemotherapy with six courses of vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) and one course of vincristine, dactinomycin, and ifosfamide (VAI) before either BuMel or seven courses of VAI and WLI (VAI plus WLI) by randomized assignment. The analysis was conducted as intention to treat. The estimates of the hazard ratio (HR), 95% CI, and P value were corrected for the three previous interim analyses by the inverse normal method. RESULTS: Of 543 potentially eligible patients, 287 were randomly assigned to VAI plus WLI (n = 143) or BuMel (n = 144). Selected patients requiring radiotherapy to an axial primary site were excluded from randomization to avoid excess organ toxicity from interaction between radiotherapy and busulfan. Median follow-up was 8.1 years. We did not observe any significant difference in survival outcomes between treatment groups. Event-free survival was 50.6% versus 56.6% at 3 years and 43.1% versus 52.9% at 8 years, for VAI plus WLI and BuMel patients, respectively, resulting in an HR of 0.79 (95% CI, 0.56 to 1.10; P = .16). For overall survival, the HR was 1.00 (95% CI, 0.70 to 1.44; P = .99). Four patients died as a result of BuMel-related toxicity, and none died after VAI plus WLI. Significantly more patients in the BuMel arm experienced severe acute toxicities than in the VAI plus WLI arm. CONCLUSION: In ES with pulmonary or pleural metastases, there is no clear benefit from BuMel compared with conventional VAI plus WLI.
Birmingham Women and Children's Hospital Birmingham United Kingdom
Centre Hospitalier Universitaire Tours France
Centre Léon Bérard Lyon; France
Centre Oscar Lambret Lille France
Centre Oscar Lambret Lille; and Université Paris Saclay Villejuif France
Charles University Prague Czech Republic
Children's Hospital of Philadelphia and University of Pennsylvania Philadelphia PA
Chris O'Brien Lifehouse Camperdown NSW Australia
Cliniques Universitaires Saint Luc Brussels Belgium
Dana Farber Boston Children's Cancer and Blood Disorder Center Boston MA
Emma Children Hospital Amsterdam University Medical Centres Amsterdam the Netherlands
Five Time Therapeutics South San Francisco CA
Gustave Roussy Université Paris Saclay Villejuif France
Gustave Roussy Villejuif France
Hôpital René Huguenin Saint Cloud France
Institute of Pediatric Onco Haematology Lyon France
Leiden University Medical Center Leiden the Netherlands
MD Anderson Cancer Center Houston TX
Medical University of Vienna Vienna Austria
Nationwide Children's Hospital and The Ohio State University College of Medicine Columbus OH
Northern Institute for Cancer Research Newcastle Upon Tyne United Kingdom
Royal Manchester Children's Hospital Manchester United Kingdom
Royal Marsden Foundation NHS Trust London United Kingdom
Seattle Children's Hospital Seattle WA
Semmelweis University Budapest Hungary
Universitaetskinderklinik Muenster Muenster Germany
University Children's Hospital Basel Basel Switzerland
University College Hospital London United Kingdom
University Hospital Essen Essen Germany
University of Birmingham Birmingham United Kingdom
University of California Davis Sacramento CA
University of California San Francisco Benioff Children's Hospital San Francisco CA
University of Leeds Liverpool United Kingdom
Zobrazit více v PubMed
Hawkins DS, Brennan B, Bölling T, et al: Ewing sarcoma, in Pizzo PA, Poplack DG (eds): Principles and Practice of Pediatric Oncology (ed 7). Philadelphia, PA, Wolters-Kluwer, 2015, pp. 855-872.
Gaspar N, Hawkins DS, Dirksen U, et al. Ewing sarcoma: Current management and future approaches through collaboration. J Clin Oncol. 2015;33:3036–3046. PubMed
Le Deley MC, Paulussen M, Lewis I, et al. Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: Results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol. 2014;32:2440–2448. PubMed
Womer RB, West DC, Krailo MD, et al: Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: A report from the Children’s Oncology Group. J Clin Oncol 30:4148-4154, 2012 [Erratum: J Clin Oncol 33:814, 2015] PubMed PMC
Paulussen M, Ahrens S, Craft AW, et al. Ewing’s tumors with primary lung metastases: Survival analysis of 114 (European Intergroup) Cooperative Ewing’s Sarcoma Studies patients. J Clin Oncol. 1998;16:3044–3052. PubMed
Paulussen M, Craft AW, Lewis I, et al. Results of the EICESS-92 study: Two randomized trials of Ewing’s sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol. 2008;26:4385–4393. PubMed
Bernstein ML, Devidas M, Lafreniere D, et al. Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/Children’s Cancer Group Phase II Study 9457--A report from the Children’s Oncology Group. J Clin Oncol. 2006;24:152–159. PubMed
Tanguturi SK, George S, Marcus KJ, et al. Whole lung irradiation in adults with metastatic Ewing sarcoma: Practice patterns and implications for treatment. Sarcoma. 2015;2015:591698. PubMed PMC
Casey DL, Alektiar KM, Gerber NK, et al. Whole lung irradiation for adults with pulmonary metastases from Ewing sarcoma. Int J Radiat Oncol Biol Phys. 2014;89:1069–1075. PubMed
Bölling T, Schuck A, Paulussen M, et al. Whole lung irradiation in patients with exclusively pulmonary metastases of Ewing tumors. Toxicity analysis and treatment results of the EICESS-92 trial [in German] Strahlenther Onkol. 2008;184:193–197. PubMed
Ladenstein R, Pötschger U, Le Deley MC, et al. Primary disseminated multifocal Ewing sarcoma: Results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28:3284–3291. PubMed
Oberlin O, Rey A, Desfachelles AS, et al. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: A study by the Société Française des Cancers de l’Enfant. J Clin Oncol. 2006;24:3997–4002. PubMed
Rasper M, Jabar S, Ranft A, et al. The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Pediatr Blood Cancer. 2014;61:1382–1386. PubMed
Whelan J, Le Deley MC, Dirksen U, et al: High-dose chemotherapy and blood autologous stem-cell rescue compared with standard chemotherapy in localized high-risk Ewing sarcoma: Results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol 36:3110-3119, 2018. PubMed PMC
Juergens C, Weston C, Lewis I, et al. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer. 2006;47:22–29. PubMed
Bölling T, Dirksen U, Ranft A, et al. Radiation toxicity following busulfan/melphalan high-dose chemotherapy in the EURO-EWING-99-trial: Review of GPOH data. Strahlenther Onkol. 2009;185(suppl 2):21–22. PubMed
Claude L, Carrie C, Alapetite C, et al. Toxicity of high-dose chemotherapy (busulfan-melphalan) followed by radiation therapy (RT) in Ewing’s axial tumours: Results of the French study. Pediatr Blood Cancer. 2006;49:555.
Carrie C, Le Deley M, Claude L, et al: The radiosensitization effect and toxicity of busulfan containing chemotherapy before radiotherapy for Ewing’s sarcomas, Strahlentherapie Und Onkologie, Urban & Vogel Neumarkter Strasse 43, D-81673 Munich. Germany 2009, pp 31.
Strauss SJ, McTiernan A, Driver D, et al. Single center experience of a new intensive induction therapy for Ewing’s family of tumors: Feasibility, toxicity, and stem cell mobilization properties. J Clin Oncol. 2003;21:2974–2981. PubMed
Bearman SI, Anderson GL, Mori M, et al. Venoocclusive disease of the liver: Development of a model for predicting fatal outcome after marrow transplantation. J Clin Oncol. 1993;11:1729–1736. PubMed
Freedman LS. Tables of the number of patients required in clinical trials using the logrank test. Stat Med. 1982;1:121–129. PubMed
Gordon Lan KK, Demets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–663.
Gordon MS, Robert F, Matei D, et al. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2014;20:5918–5926. PubMed PMC
O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–556. PubMed
Wassmer G. Planning and analyzing adaptive group sequential survival trials. Biom J. 2006;48:714–729. PubMed
Lakbfleisch R, Prentics R: The Statistical Analysis of Failure Time Data (ed 2). New York, NY, Wiley, 2002.
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
Lin DY Wei LJ, Ying Z: Checking the Cox model with cumulative sums of Martingale-based residuals. Biometrika. 1993;80:557–572.
Thomas-Teinturier C, Allodji RS, Svetlova E, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30:1437–1446. PubMed
van Dorp W, Mulder RL, Kremer LC, et al. Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. J Clin Oncol. 2016;34:3440–3450. PubMed PMC
Skinner R, Mulder RL, Kremer LC, et al. Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Lancet Oncol. 2017;18:e75–e90. PubMed
Motosue MS, Zhu L, Srivastava K, et al. Pulmonary function after whole lung irradiation in pediatric patients with solid malignancies. Cancer. 2012;118:1450–1456. PubMed PMC
Ladenstein R, Lasset C, Pinkerton R, et al: Impact of megatherapy in children with high-risk Ewing’s tumours in complete remission: A report from the EBMT Solid Tumour Registry. Bone Marrow Transplant 15:697-705, 1995 [Erratum: Bone Marrow Transplant 18:675, 1996] PubMed
Ferrari S, Sundby Hall K, Luksch R, et al. Nonmetastatic Ewing family tumors: High-dose chemotherapy with stem cell rescue in poor responder patients. Results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III protocol. Ann Oncol. 2011;22:1221–1227. PubMed
Pappo AS, Dirksen U. Rhabdomyosarcoma, Ewing sarcoma, and other round cell sarcomas. J Clin Oncol. 2018;36:168–179. PubMed
Luksch R, Tienghi A, Hall KS, et al. Primary metastatic Ewing’s family tumors: Results of the Italian Sarcoma Group and Scandinavian Sarcoma Group ISG/SSG IV Study including myeloablative chemotherapy and total-lung irradiation. Ann Oncol. 2012;23:2970–2976. PubMed
Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing Sarcoma. Nat Rev Dis Primers. 2018;(1):5. PubMed
Factors Influencing the Outcome of Patients with Primary Ewing Sarcoma of the Sacrum
Effect of Radiotherapy Dose on Outcome in Nonmetastatic Ewing Sarcoma
ClinicalTrials.gov
NCT00020566, NCT00987636