Root ABA and H+-ATPase are key players in the root and shoot growth-promoting action of humic acids
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31624800
PubMed Central
PMC6785783
DOI
10.1002/pld3.175
PII: PLD3175
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, cytokinin, humic acid, humic substances, plant development, root PM H+‐ATPase,
- Publikační typ
- časopisecké články MeSH
Although the ability of humic (HA) and fulvic acids (FA) to improve plant growth has been demonstrated, knowledge about the mechanisms responsible for the direct effects of HA and FA on the promotion of plant growth is scarce and fragmentary. Our study investigated the causal role of both root PM H+-ATPase activity and ABA in the SHA-promoting action on both root and shoot growth. The involvement of these processes in the regulation of shoot cytokinin concentration and activity was also studied. Our aim was to integrate such plant responses for providing new insights to the current model on the mode of action of HA for promoting root and shoot growth. Experiments employing specific inhibitors and using Cucumis sativus L. plants show that both the root PM H+-ATPase activity and root ABA play a crucial role in the root growth-promoting action of SHA. With regard to the HA-promoting effects on shoot growth, two pathways of events triggered by the interaction of SHA with plant roots are essential for the increase in root PM H+-ATPase activity-which also mediates an increase in cytokinin concentration and action in the shoot-and the ABA-mediated increase in hydraulic conductivity (Lpr).
Zobrazit více v PubMed
Aguirre, E. , Lemenager, D. , Bacaicoa, E. , Fuentes, M. , Baigorri, R. , Zamarreño, A. M. , & García‐Mina, J. M. (2009). The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe‐sufficient cucumber plants. Plant Physiology and Biochemistry, 47(3), 215–223. PubMed
Baigorri, R. , Fuentes, M. , Gonzalez‐Gaitano, G. , & García‐Mina, J. M. (2007a). Analysis of molecular aggregation in humic substances in solution. Colloids and Surf A, 302, 301–306. 10.1016/j.colsurfa.2007.02.048 DOI
Baigorri, R. , Fuentes, M. , Gonzalez‐Gaitano, G. , & Garcia‐Mina, J. M. (2007b). Simultaneous presence of diverse molecular patterns in humic substances in solution. The Journal of Physical Chemistry B, 111, 10577–10582. 10.1021/jp0738154 PubMed DOI
Berbara, R. L. , & García, A. C. (2014). Humic substances and plant defense metabolism. Physiological mechanisms and adaptation strategies in plants under changing environment In Parvaiz A., & Mohd R. W. (Eds.), Humic Substances and plant defense metabolism (pp. 297–319). New York: Springer.
Bierfreund, N. M. , Reski, R. , & Decker, E. L. (2003). Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens . Plant Cell Reports, 21, 1143–1152. 10.1007/s00299-003-0646-1 PubMed DOI
Bigot, J. , & Boucaud, J. (1998). Effects of synthetic plant growth retardants and abscisic acid on root functions of Brassica rapa plants exposed to low root-zone temperature. New Phytologist, 139, 255–265.
Canellas, L. P. , Dantas, D. J. , Aguiar, N. O. , Peres, L. E. P. , Zsogon, A. , Olivares, F. L. , … Piccolo, A. (2011). Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. The Annals of Applied Biology, 159, 202–211. 10.1111/j.1744-7348.2011.00487.x DOI
Canellas, L. , & Olivares, F. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1, 3–13. 10.1186/2196-5641-1-3 DOI
Canellas, L. P. , Olivares, F. L. , Okorokova‐Facanha, A. L. , & Facanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+‐ATPase activity in maize roots. Plant Physiology, 130, 1951–1957. PubMed PMC
Cao, X. , & Schmidt‐Rohr, K. (2018). Abundant nonprotonated aromatic and oxygen‐bonded carbons make humic substances distinct from biopolymers. Environmental Science & Technology Letters, 5, 476–480. 10.1021/acs.estlett.8b00107 DOI
Chen, Y. , De Nobili, M. , & Aviad, T. (2004). Stimulatory effects of humic substances on plant growth In Magdoff F., Ray R., & Weil R. (Eds.), Soil organic matter in sustainable agriculture (pp. 103–129). Boca Raton, FL: CRC Press.
Clapp, C. E. , & Hayes, M. H. B. (1999). Sizes and shapes of humic substances: Micelles, subunits, and the mediterranean sun. Soil Science, 164, 777–789. 10.1097/00010694-199911000-00002 DOI
Dobrev, P. I. , & Kamínek, M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 950, 21–29. PubMed
El‐Esawi, M. , Arthaut, L.‐D. , Jourdan, N. , d’Harlingue, A. , Link, J. , Martino, C. F. , & Ahmad, M. (2017). Blue‐light induced biosynthesis of ROS contributes to the signalling mechanism of Arabidopsis cryptochrome. Scientific Reports, 7, 13875. PubMed PMC
Erro, J. , Urrutia, O. , Baigorri, R. , Aparicio‐Tejo, P. , Irigoyen, I. , Torino, F. , … Garcia‐Mina, J. M. (2012). Organic complexed superphosphates (CSP): Physicochemical characterization and agronomical properties. Journal of Agriculture and Food Chemistry, 60, 2008–2017. 10.1021/jf204821j PubMed DOI
García, A. C. , Santos, L. A. , Ambrósio de Souza, L. G. , Tavares, O. C. H. , Zonta, E. , Gomes, E. T. M. , … Berbara, R. L. L. (2016). Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology, 192, 56–63. 10.1016/j.jplph.2016.01.008 PubMed DOI
García, A. C. , Santos, L. A. , Izquierdo, F. G. , Sperandio, M. V. L. , Castro, R. N. , & Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203–208. 10.1016/j.ecoleng.2012.06.011 DOI
Garcia‐Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37, 1960–1972. 10.1016/j.orggeochem.2006.07.027 DOI
Gerke, J. (2010). Humic (organic matter)‐Al(Fe)‐phosphate complexes: An underestimated phosphate form in soils and source of plant‐available phosphate. Soil Science, 175, 417–425. 10.1097/SS.0b013e3181f1b4dd DOI
Hager, A. (2003). Role of the plasma membrane H+‐ATPase in auxin‐induced elongation growth: Historical and new aspects. Journal of Plant Research, 116, 483–505. 10.1007/s10265-003-0110-x PubMed DOI
Harris, J. M. , & Ondzighi‐Assoume, C. H. (2017). Environmental nitrate signals through abscisic acid in the root tip. Plant Signaling & Behavior, 12, e1273303 10.1080/15592324.2016.1273303 PubMed DOI PMC
MacCarthy, P. , Clapp, C. E. , Malcom, R. L. , & Bloom, P. R. (1990). An introduction to soil humic substances In MacCarthy P., Clapp C. E., Malcom R. L., & Bloom P. R. (Eds.), Proceedings of a symposium by the IHSS, Chicago (pp. 161–186).
Martínez‐Ballesta, M. C. , Alcaraz‐López, C. , Mota‐Cadenas, C. , Muries, B. , & Carvajal, M. (2011)Plant hydraulic conductivity: The Aquaporins contribution In Elango L. (Ed.), Hydraulic conductivity. Issues, determination and applications (pp. 103–123). London: IntechOpen Limited.
Migocka, M. , & Papierniak, A. (2011). Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Molecular Breeding, 28(3), 343–357. 10.1007/s11032-010-9487-0 DOI
Monda, H. , Cozzolino, V. , Vinci, G. , Spaccini, R. , & Piccolo, A. (2017). Molecular characteristics of water‐extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Science of the Total Environment, 590, 40–49. 10.1016/j.scitotenv.2017.03.026 PubMed DOI
Mora, V. , Bacaicoa, E. , Baigorri, R. , Zamarreño, A. M. , & García‐Mina, J. M. (2014a). NO and IAA key regulators in the shoot growth promoting action of humic acid in Cucumis sativus L. Journal of Plant Growth Regulation, 33, 430–439. 10.1007/s00344-013-9394-9 DOI
Mora, V. , Bacaicoa, E. , Zamarreño, A. M. , Aguirre, E. , Garnica, M. , Fuentes, M. , & García‐Mina, J. M. (2010). Action of humic acid on promotion of cucumber shoot growth involves nitrate‐related changes associated with the root‐to‐shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, 167, 633–642. 10.1016/j.jplph.2009.11.018 PubMed DOI
Mora, V. , Baigorri, R. , Bacaicoa, E. , Zamarreño, A. M. , & García‐Mina, J. M. (2012). The humic acid‐induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany, 76, 24–32. 10.1016/j.envexpbot.2011.10.001 DOI
Mora, V. , Olaetxea, M. , Bacaicoa, E. , Baigorri, R. , Fuentes, M. , Zamarrerreño, A. M. , & Garcia‐Mina, J. M. (2014b). Abiotic stress tolerance in plants: Exploring the role of nitric oxide and humic substances In Khan M. N., Mobin M., Mohammad F., & Corpas F. J. (Eds.), Nitric oxide in plants: Metabolism and role in stress physiology (pp. 243–264). Berlin: Springer International Publishing.
Muscolo, A. , Sidari, M. , Francioso, O. , Tugnoli, V. , & Nardi, S. (2007). The auxin‐like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology, 33, 115–129. 10.1007/s10886-006-9206-9 PubMed DOI
Nardi, S. , Pizzeghello, D. , Muscolo, A. , & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology & Biochemistry, 34, 1527–1536. 10.1016/S0038-0717(02)00174-8 DOI
Olaetxea, M. , De Hita, D. , García, A. C. , Fuentes, M. , Baigorri, R. , Mora, V. , … García Mina, J. M. (2018). Hypothetical framework integrating the main mechanism involved in the promoting action of rhizospheric humic substances on plant root‐ and shoot‐ growth. Applied Soil Ecology, 123, 521–537.
Olaetxea, M. , Mora, V. , Bacaicoa, E. , Baigorri, R. , Garnica, M. , Fuentes, M. , … Garcia‐Mina, J. M. (2015). ABA‐regulation of root hydraulic conductivity and aquaporin gene‐ expression is crucial to the plant shoot rise caused by rhizosphere humic acids. Plant Physiology, 169, 2587–2596. 10.1104/pp.15.00596 PubMed DOI PMC
Olaetxea, M. , Mora, V. , Garcia, A. C. , Santos, L. A. , Baigorri, R. , Fuentes, M. , … Garcia‐Mina, J. M. (2016). Root‐Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids. Plant Signaling & Behavior, 11, e1161878 10.1080/15592324.2016.1161878 PubMed DOI PMC
Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134.
Quaggiotti, S. , Ruperti, B. , Pizzeghello, D. , Francioso, O. , Tugnoli, V. , & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, 55, 803–813. 10.1093/jxb/erh085 PubMed DOI
Ramos, A. C. , Dobbss, L. B. , Santos, L. A. , Fernandes, M. S. , Olivares, F. L. , Aguiar, N. O. , & Canellas, L. (2015). Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+‐dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2, 3 10.1186/s40538-014-0030-0 DOI
Schmidt, W. , Santi, S. , Pinton, R. , & Varanini, Z. (2007). Water‐extractable humic substances alter root development and epidermal cell pattern in Arabidopsis . Plant and Soil, 300, 259–267. 10.1007/s11104-007-9411-5 DOI
Spichal, L. , Werner, T. , Popa, I. , Riefler, M. , Schmülling, T. , & Strnad, M. (2009). The purine derivative PI‐55 blocks cytokinin action via receptor inhibition. FEBS Journal, 276, 244–253. 10.1111/j.1742-4658.2008.06777.x PubMed DOI
Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions, Ed 2. New York: Wiley.
Swift, R. (1989). Molecular weight, size, shape, and charge characteristics of humic substances: Some basic considerations In Hayes M. H. B., MacCarthy P., Malcom R. E., & Swift R. (Eds.), Humic substances: II (pp. 449–465). New York: John Wiley & Sons.
Tipping, E. (2002). Cation binding by humic substances. Cambridge, England: Cambridge University Press.
Trevisan, S. , Botton, A. , Vaccaro, S. , Vezzaro, A. , Quaggiotti, S. , & Nardi, S. (2011). Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, 74, 45–55. 10.1016/j.envexpbot.2011.04.017 DOI
Trevisan, S. , Francioso, O. , Quaggiotti, S. , & Nardi, S. (2010a). Humic substances biological activity at the plant‐soil interface. From environmental aspects to molecular factors. Plant Signaling & Behavior, 5, 6 635–643 10.4161/psb.5.6.11211 PubMed DOI PMC
Trevisan, S. , Pizzeghello, D. , Ruperti, B. , Francioso, O. , Sassi, A. , Palme, K. , … Nardi, S. (2010b). Humic substances induce lateral root formation and expression of the early auxin‐responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604–614. PubMed
Urrutia, O. , Erro, J. , Guardado, I. , San Francisco, S. , Mandado, M. , Baigorri, R. , … Garcia Mina, J. M. (2014). Physico‐chemical characterization of humic‐metalphosphate complexes and their potential application to the manufacture of new types of phosphate‐based fertilizers. Journal of Plant Nutrition and Soil Science, 177, 128–136. 10.1002/jpln.201200651 DOI
Vaughan, D. , & Malcolm, R. E. (1985). Influence of humic substances on growth and physiological processes In Vaughan D., & Malcolm R. E. (Eds.), Soil organic matter and biological activity. Dordrecht: Kluwer Academic Publishers.
Wan, H. , Zhao, Z. , Qian, C. , Sui, Y. , Malik, A. A. , & Chen, J. (2010). Selection of appropriate reference genes for gene expression studies by quantitative real‐time polymerase chain reaction in cucumber. Analytical Biochemistry, 399(2), 257–326. 10.1016/j.ab.2009.12.008 PubMed DOI
Warzybok, A. , & Migocka, M. (2013). Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS ONE 8(9), e72887 10.1371/journal.pone.0072887 PubMed DOI PMC
Wdowikowska, A. , & Klobus, G. (2016). The plasma membrane proton pump gene family in cucumber. Acta Physiologiae Plantarum, 38, 135 10.1007/s11738-016-2152-4 DOI
Yang, H. , & Murphy, A. (2013). Membrane preparation, sucrose density gradients and two‐phase separation fractionation from five‐day‐old Arabidopsis seedlings. Bio‐Protocol, 3(24), e1014 10.21769/BioProtoc.1014 DOI
Zandonadi, D. , Canellas, L. , & Façanha, A. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225, 1583–1595. 10.1007/s00425-006-0454-2 PubMed DOI
Zandonadi, D. , Santos, M. , Dobbss, L. , Fb, O. , Canellas, L. , Binzel, M. , … Façanha, A. (2010). Nitric oxide mediates humic acids‐induced root development and plasma membrane H+‐ATPase activation. Planta, 231, 1025–1036. 10.1007/s00425-010-1106-0 PubMed DOI