Root ABA and H+-ATPase are key players in the root and shoot growth-promoting action of humic acids

. 2019 Oct ; 3 (10) : e00175. [epub] 20191010

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31624800

Although the ability of humic (HA) and fulvic acids (FA) to improve plant growth has been demonstrated, knowledge about the mechanisms responsible for the direct effects of HA and FA on the promotion of plant growth is scarce and fragmentary. Our study investigated the causal role of both root PM H+-ATPase activity and ABA in the SHA-promoting action on both root and shoot growth. The involvement of these processes in the regulation of shoot cytokinin concentration and activity was also studied. Our aim was to integrate such plant responses for providing new insights to the current model on the mode of action of HA for promoting root and shoot growth. Experiments employing specific inhibitors and using Cucumis sativus L. plants show that both the root PM H+-ATPase activity and root ABA play a crucial role in the root growth-promoting action of SHA. With regard to the HA-promoting effects on shoot growth, two pathways of events triggered by the interaction of SHA with plant roots are essential for the increase in root PM H+-ATPase activity-which also mediates an increase in cytokinin concentration and action in the shoot-and the ABA-mediated increase in hydraulic conductivity (Lpr).

Zobrazit více v PubMed

Aguirre, E. , Lemenager, D. , Bacaicoa, E. , Fuentes, M. , Baigorri, R. , Zamarreño, A. M. , & García‐Mina, J. M. (2009). The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe‐sufficient cucumber plants. Plant Physiology and Biochemistry, 47(3), 215–223. PubMed

Baigorri, R. , Fuentes, M. , Gonzalez‐Gaitano, G. , & García‐Mina, J. M. (2007a). Analysis of molecular aggregation in humic substances in solution. Colloids and Surf A, 302, 301–306. 10.1016/j.colsurfa.2007.02.048 DOI

Baigorri, R. , Fuentes, M. , Gonzalez‐Gaitano, G. , & Garcia‐Mina, J. M. (2007b). Simultaneous presence of diverse molecular patterns in humic substances in solution. The Journal of Physical Chemistry B, 111, 10577–10582. 10.1021/jp0738154 PubMed DOI

Berbara, R. L. , & García, A. C. (2014). Humic substances and plant defense metabolism. Physiological mechanisms and adaptation strategies in plants under changing environment In Parvaiz A., & Mohd R. W. (Eds.), Humic Substances and plant defense metabolism (pp. 297–319). New York: Springer.

Bierfreund, N. M. , Reski, R. , & Decker, E. L. (2003). Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens . Plant Cell Reports, 21, 1143–1152. 10.1007/s00299-003-0646-1 PubMed DOI

Bigot, J. , & Boucaud, J. (1998). Effects of synthetic plant growth retardants and abscisic acid on root functions of Brassica rapa plants exposed to low root-zone temperature. New Phytologist, 139, 255–265.

Canellas, L. P. , Dantas, D. J. , Aguiar, N. O. , Peres, L. E. P. , Zsogon, A. , Olivares, F. L. , … Piccolo, A. (2011). Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. The Annals of Applied Biology, 159, 202–211. 10.1111/j.1744-7348.2011.00487.x DOI

Canellas, L. , & Olivares, F. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1, 3–13. 10.1186/2196-5641-1-3 DOI

Canellas, L. P. , Olivares, F. L. , Okorokova‐Facanha, A. L. , & Facanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+‐ATPase activity in maize roots. Plant Physiology, 130, 1951–1957. PubMed PMC

Cao, X. , & Schmidt‐Rohr, K. (2018). Abundant nonprotonated aromatic and oxygen‐bonded carbons make humic substances distinct from biopolymers. Environmental Science & Technology Letters, 5, 476–480. 10.1021/acs.estlett.8b00107 DOI

Chen, Y. , De Nobili, M. , & Aviad, T. (2004). Stimulatory effects of humic substances on plant growth In Magdoff F., Ray R., & Weil R. (Eds.), Soil organic matter in sustainable agriculture (pp. 103–129). Boca Raton, FL: CRC Press.

Clapp, C. E. , & Hayes, M. H. B. (1999). Sizes and shapes of humic substances: Micelles, subunits, and the mediterranean sun. Soil Science, 164, 777–789. 10.1097/00010694-199911000-00002 DOI

Dobrev, P. I. , & Kamínek, M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 950, 21–29. PubMed

El‐Esawi, M. , Arthaut, L.‐D. , Jourdan, N. , d’Harlingue, A. , Link, J. , Martino, C. F. , & Ahmad, M. (2017). Blue‐light induced biosynthesis of ROS contributes to the signalling mechanism of Arabidopsis cryptochrome. Scientific Reports, 7, 13875. PubMed PMC

Erro, J. , Urrutia, O. , Baigorri, R. , Aparicio‐Tejo, P. , Irigoyen, I. , Torino, F. , … Garcia‐Mina, J. M. (2012). Organic complexed superphosphates (CSP): Physicochemical characterization and agronomical properties. Journal of Agriculture and Food Chemistry, 60, 2008–2017. 10.1021/jf204821j PubMed DOI

García, A. C. , Santos, L. A. , Ambrósio de Souza, L. G. , Tavares, O. C. H. , Zonta, E. , Gomes, E. T. M. , … Berbara, R. L. L. (2016). Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology, 192, 56–63. 10.1016/j.jplph.2016.01.008 PubMed DOI

García, A. C. , Santos, L. A. , Izquierdo, F. G. , Sperandio, M. V. L. , Castro, R. N. , & Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203–208. 10.1016/j.ecoleng.2012.06.011 DOI

Garcia‐Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37, 1960–1972. 10.1016/j.orggeochem.2006.07.027 DOI

Gerke, J. (2010). Humic (organic matter)‐Al(Fe)‐phosphate complexes: An underestimated phosphate form in soils and source of plant‐available phosphate. Soil Science, 175, 417–425. 10.1097/SS.0b013e3181f1b4dd DOI

Hager, A. (2003). Role of the plasma membrane H+‐ATPase in auxin‐induced elongation growth: Historical and new aspects. Journal of Plant Research, 116, 483–505. 10.1007/s10265-003-0110-x PubMed DOI

Harris, J. M. , & Ondzighi‐Assoume, C. H. (2017). Environmental nitrate signals through abscisic acid in the root tip. Plant Signaling & Behavior, 12, e1273303 10.1080/15592324.2016.1273303 PubMed DOI PMC

MacCarthy, P. , Clapp, C. E. , Malcom, R. L. , & Bloom, P. R. (1990). An introduction to soil humic substances In MacCarthy P., Clapp C. E., Malcom R. L., & Bloom P. R. (Eds.), Proceedings of a symposium by the IHSS, Chicago (pp. 161–186).

Martínez‐Ballesta, M. C. , Alcaraz‐López, C. , Mota‐Cadenas, C. , Muries, B. , & Carvajal, M. (2011)Plant hydraulic conductivity: The Aquaporins contribution In Elango L. (Ed.), Hydraulic conductivity. Issues, determination and applications (pp. 103–123). London: IntechOpen Limited.

Migocka, M. , & Papierniak, A. (2011). Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Molecular Breeding, 28(3), 343–357. 10.1007/s11032-010-9487-0 DOI

Monda, H. , Cozzolino, V. , Vinci, G. , Spaccini, R. , & Piccolo, A. (2017). Molecular characteristics of water‐extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Science of the Total Environment, 590, 40–49. 10.1016/j.scitotenv.2017.03.026 PubMed DOI

Mora, V. , Bacaicoa, E. , Baigorri, R. , Zamarreño, A. M. , & García‐Mina, J. M. (2014a). NO and IAA key regulators in the shoot growth promoting action of humic acid in Cucumis sativus L. Journal of Plant Growth Regulation, 33, 430–439. 10.1007/s00344-013-9394-9 DOI

Mora, V. , Bacaicoa, E. , Zamarreño, A. M. , Aguirre, E. , Garnica, M. , Fuentes, M. , & García‐Mina, J. M. (2010). Action of humic acid on promotion of cucumber shoot growth involves nitrate‐related changes associated with the root‐to‐shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, 167, 633–642. 10.1016/j.jplph.2009.11.018 PubMed DOI

Mora, V. , Baigorri, R. , Bacaicoa, E. , Zamarreño, A. M. , & García‐Mina, J. M. (2012). The humic acid‐induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany, 76, 24–32. 10.1016/j.envexpbot.2011.10.001 DOI

Mora, V. , Olaetxea, M. , Bacaicoa, E. , Baigorri, R. , Fuentes, M. , Zamarrerreño, A. M. , & Garcia‐Mina, J. M. (2014b). Abiotic stress tolerance in plants: Exploring the role of nitric oxide and humic substances In Khan M. N., Mobin M., Mohammad F., & Corpas F. J. (Eds.), Nitric oxide in plants: Metabolism and role in stress physiology (pp. 243–264). Berlin: Springer International Publishing.

Muscolo, A. , Sidari, M. , Francioso, O. , Tugnoli, V. , & Nardi, S. (2007). The auxin‐like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology, 33, 115–129. 10.1007/s10886-006-9206-9 PubMed DOI

Nardi, S. , Pizzeghello, D. , Muscolo, A. , & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology & Biochemistry, 34, 1527–1536. 10.1016/S0038-0717(02)00174-8 DOI

Olaetxea, M. , De Hita, D. , García, A. C. , Fuentes, M. , Baigorri, R. , Mora, V. , … García Mina, J. M. (2018). Hypothetical framework integrating the main mechanism involved in the promoting action of rhizospheric humic substances on plant root‐ and shoot‐ growth. Applied Soil Ecology, 123, 521–537.

Olaetxea, M. , Mora, V. , Bacaicoa, E. , Baigorri, R. , Garnica, M. , Fuentes, M. , … Garcia‐Mina, J. M. (2015). ABA‐regulation of root hydraulic conductivity and aquaporin gene‐ expression is crucial to the plant shoot rise caused by rhizosphere humic acids. Plant Physiology, 169, 2587–2596. 10.1104/pp.15.00596 PubMed DOI PMC

Olaetxea, M. , Mora, V. , Garcia, A. C. , Santos, L. A. , Baigorri, R. , Fuentes, M. , … Garcia‐Mina, J. M. (2016). Root‐Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids. Plant Signaling & Behavior, 11, e1161878 10.1080/15592324.2016.1161878 PubMed DOI PMC

Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134.

Quaggiotti, S. , Ruperti, B. , Pizzeghello, D. , Francioso, O. , Tugnoli, V. , & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, 55, 803–813. 10.1093/jxb/erh085 PubMed DOI

Ramos, A. C. , Dobbss, L. B. , Santos, L. A. , Fernandes, M. S. , Olivares, F. L. , Aguiar, N. O. , & Canellas, L. (2015). Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+‐dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2, 3 10.1186/s40538-014-0030-0 DOI

Schmidt, W. , Santi, S. , Pinton, R. , & Varanini, Z. (2007). Water‐extractable humic substances alter root development and epidermal cell pattern in Arabidopsis . Plant and Soil, 300, 259–267. 10.1007/s11104-007-9411-5 DOI

Spichal, L. , Werner, T. , Popa, I. , Riefler, M. , Schmülling, T. , & Strnad, M. (2009). The purine derivative PI‐55 blocks cytokinin action via receptor inhibition. FEBS Journal, 276, 244–253. 10.1111/j.1742-4658.2008.06777.x PubMed DOI

Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions, Ed 2. New York: Wiley.

Swift, R. (1989). Molecular weight, size, shape, and charge characteristics of humic substances: Some basic considerations In Hayes M. H. B., MacCarthy P., Malcom R. E., & Swift R. (Eds.), Humic substances: II (pp. 449–465). New York: John Wiley & Sons.

Tipping, E. (2002). Cation binding by humic substances. Cambridge, England: Cambridge University Press.

Trevisan, S. , Botton, A. , Vaccaro, S. , Vezzaro, A. , Quaggiotti, S. , & Nardi, S. (2011). Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, 74, 45–55. 10.1016/j.envexpbot.2011.04.017 DOI

Trevisan, S. , Francioso, O. , Quaggiotti, S. , & Nardi, S. (2010a). Humic substances biological activity at the plant‐soil interface. From environmental aspects to molecular factors. Plant Signaling & Behavior, 5, 6 635–643 10.4161/psb.5.6.11211 PubMed DOI PMC

Trevisan, S. , Pizzeghello, D. , Ruperti, B. , Francioso, O. , Sassi, A. , Palme, K. , … Nardi, S. (2010b). Humic substances induce lateral root formation and expression of the early auxin‐responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604–614. PubMed

Urrutia, O. , Erro, J. , Guardado, I. , San Francisco, S. , Mandado, M. , Baigorri, R. , … Garcia Mina, J. M. (2014). Physico‐chemical characterization of humic‐metalphosphate complexes and their potential application to the manufacture of new types of phosphate‐based fertilizers. Journal of Plant Nutrition and Soil Science, 177, 128–136. 10.1002/jpln.201200651 DOI

Vaughan, D. , & Malcolm, R. E. (1985). Influence of humic substances on growth and physiological processes In Vaughan D., & Malcolm R. E. (Eds.), Soil organic matter and biological activity. Dordrecht: Kluwer Academic Publishers.

Wan, H. , Zhao, Z. , Qian, C. , Sui, Y. , Malik, A. A. , & Chen, J. (2010). Selection of appropriate reference genes for gene expression studies by quantitative real‐time polymerase chain reaction in cucumber. Analytical Biochemistry, 399(2), 257–326. 10.1016/j.ab.2009.12.008 PubMed DOI

Warzybok, A. , & Migocka, M. (2013). Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS ONE 8(9), e72887 10.1371/journal.pone.0072887 PubMed DOI PMC

Wdowikowska, A. , & Klobus, G. (2016). The plasma membrane proton pump gene family in cucumber. Acta Physiologiae Plantarum, 38, 135 10.1007/s11738-016-2152-4 DOI

Yang, H. , & Murphy, A. (2013). Membrane preparation, sucrose density gradients and two‐phase separation fractionation from five‐day‐old Arabidopsis seedlings. Bio‐Protocol, 3(24), e1014 10.21769/BioProtoc.1014 DOI

Zandonadi, D. , Canellas, L. , & Façanha, A. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225, 1583–1595. 10.1007/s00425-006-0454-2 PubMed DOI

Zandonadi, D. , Santos, M. , Dobbss, L. , Fb, O. , Canellas, L. , Binzel, M. , … Façanha, A. (2010). Nitric oxide mediates humic acids‐induced root development and plasma membrane H+‐ATPase activation. Planta, 231, 1025–1036. 10.1007/s00425-010-1106-0 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...