Potassium in Root Growth and Development
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
LO1417
Czech Ministry of Education, Youth and Sports
PubMed
31652570
PubMed Central
PMC6843428
DOI
10.3390/plants8100435
PII: plants8100435
Knihovny.cz E-resources
- Keywords
- KT/HAK/KUP transporters, deficiency, potassium, root growth, root system architecture,
- Publication type
- Journal Article MeSH
- Review MeSH
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
See more in PubMed
Leigh R.A., Wyn Jones R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984;97:1–13. doi: 10.1111/j.1469-8137.1984.tb04103.x. DOI
Marschner H. Mineral Nutrition of Higher Plants. Academic Press Ltd.; London, UK: 1995. pp. 1–889.
Cotelle V., Leonhardt N. 14-3-3 proteins in guard cell signaling. Front. Plant Sci. 2016;6:1210. doi: 10.3389/fpls.2015.01210. PubMed DOI PMC
Blatt M.R. Plant physiology: redefining the enigma of metabolism in stomatal movement. Curr. Biol. 2016;26:R107–R109. doi: 10.1016/j.cub.2015.12.025. PubMed DOI
Takahashi K., Kinoshita T. The regulation of plant cell expansion: Auxin-induced turgor-driven cell elongation. In: Rose R.J., editor. Molecular Cell Biology of the Growth and Differentiation of Plant Cells. CRC Press; Boca Raton, London, UK: 2016. pp. 156–173.
Osakabe Y., Arinaga N., Umezawa T., Katsura S., Nagamachi K., Tanaka H., Ohiraki H., Yamada K., Seo S.U., Abo M. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell. 2013;25:609–624. doi: 10.1105/tpc.112.105700. PubMed DOI PMC
Elumalai R.P., Nagpal P., Reed J.W. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell. 2002;14:119–131. doi: 10.1105/tpc.010322. PubMed DOI PMC
Liu Z., Persson S., Sánchez-Rodríguez C. At the border: The plasma membrane–cell wall continuum. J. Exp. Bot. 2015;66:1553–1563. doi: 10.1093/jxb/erv019. PubMed DOI
Nieves-Cordones M., Andrianteranagna M., Cuellar T., Cherel I., Gibrat R., Boeglin M., Moreau B., Paris N., Verdeil J.L., Zimmermann S., et al. Characterization of the grapevine Shaker K+ channel VvK3.1 supports its function in massive potassium fluxes necessary for berry potassium loading and pulvinus-actuated leaf movements. New Phytol. 2019;222:286–300. doi: 10.1111/nph.15604. PubMed DOI
Wang Y., Wu W.-H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013;64:451–476. doi: 10.1146/annurev-arplant-050312-120153. PubMed DOI
Szczerba M.W., Britto D.T., Kronzucker H.J. K+ transport in plants: physiology and molecular biology. J. Plant Physiol. 2009;166:447–466. doi: 10.1016/j.jplph.2008.12.009. PubMed DOI
Wang Y., Wu W.H. Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 2017;39:123–128. doi: 10.1016/j.pbi.2017.06.006. PubMed DOI
Gierth M., Maser P. Potassium transporters in plants - Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 2007;581:2348–2356. doi: 10.1016/j.febslet.2007.03.035. PubMed DOI
Walker D.J., Black C.R., Miller A.J. The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiol. 1998;118:957–964. doi: 10.1104/pp.118.3.957. PubMed DOI PMC
Maathuis F.J., Sanders D. Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 1996;96:158–168. doi: 10.1111/j.1399-3054.1996.tb00197.x. DOI
Pritchard J. The control of cell expansion in roots. New Phytol. 1994;127:3–26. doi: 10.1111/j.1469-8137.1994.tb04255.x. PubMed DOI
Dolan L., Davies J. Cell expansion in roots. Curr. Opin. Plant Biol. 2004;7:33–39. doi: 10.1016/j.pbi.2003.11.006. PubMed DOI
Rigas S., Debrosses G., Haralampidis K., Vicente-Agullo F., Feldmann K.A., Grabov A., Dolan L., Hatzopoulos P. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell. 2001;13:139–151. doi: 10.1105/tpc.13.1.139. PubMed DOI PMC
Desbrosses G., Josefsson C., Rigas S., Hatzopoulos P., Dolan L. AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J. Exp. Bot. 2003;54:781–788. doi: 10.1093/jxb/erg066. PubMed DOI
Zhao S., Zhang M.L., Ma T.L., Wang Y. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell. 2016;28:3005–3019. doi: 10.1105/tpc.16.00684. PubMed DOI PMC
Cakmak I., Hengeler C., Marschner H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot. 1994;45:1251–1257. doi: 10.1093/jxb/45.9.1251. DOI
Cakmak I., Hengeler C., Marschner H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 1994;45:1245–1250. doi: 10.1093/jxb/45.9.1245. DOI
Wang Y., Wu W.H. Plant sensing and signaling in response to K+-deficiency. Mol. Plant. 2010;3:280–287. doi: 10.1093/mp/ssq006. PubMed DOI
Brady N.C., Weil R.R. The Nature and Properties of Soils. 13th ed. Pearson Education Inc. Prentice Hall; Upper Saddle River, NJ, USA: 2002. pp. 1–960.
Römheld V., Kirkby E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil. 2010;335:155–180. doi: 10.1007/s11104-010-0520-1. DOI
Wang M., Zheng Q., Shen Q., Guo S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013;14:7370–7390. doi: 10.3390/ijms14047370. PubMed DOI PMC
Gierth M., Maser P., Schroeder J.I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol. 2005;137:1105–1114. doi: 10.1104/pp.104.057216. PubMed DOI PMC
Pyo Y.J., Gierth M., Schroeder J.I., Cho M.H. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 2010;153:863–875. doi: 10.1104/pp.110.154369. PubMed DOI PMC
Sharma T., Dreyer I., Riedelsberger J. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front. Plant Sci. 2013;4:224. doi: 10.3389/fpls.2013.00224. PubMed DOI PMC
Santa-Maria G.E., Oliferuk S., Moriconi J.I. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. J. Plant Physiol. 2018;226:77–90. doi: 10.1016/j.jplph.2018.04.008. PubMed DOI
Kellermeier F., Armengaud P., Seditas T.J., Danku J., Salt D.E., Amtmann A. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell. 2014;26:1480–1496. doi: 10.1105/tpc.113.122101. PubMed DOI PMC
Li J., Wu W.H., Wang Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J. Int. Plant Biol. 2017;59:895–909. doi: 10.1111/jipb.12575. PubMed DOI
Drew M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 1975;75:479–490. doi: 10.1111/j.1469-8137.1975.tb01409.x. DOI
Fernández F.G., Brouder S.M., Volenec J.J., Beyrouty C.A., Hoyum R. Soybean shoot and root response to localized water and potassium in a split-pot study. Plant Soil. 2011;344:197–212. doi: 10.1007/s11104-011-0740-z. DOI
Kellermeier F., Chardon F., Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol. 2013;161:1421–1432. doi: 10.1104/pp.112.211144. PubMed DOI PMC
Jung J.Y., Shin R., Schachtman D.P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell. 2009;21:607–621. doi: 10.1105/tpc.108.063099. PubMed DOI PMC
Kim M.J., Ciani S., Schachtman D.P. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant. 2010;3:420–427. doi: 10.1093/mp/ssp121. PubMed DOI
Hackett C. A study of the root system of barley: I. Effects of nutrition on two varieties. New Phytol. 1968;67:287–299. doi: 10.1111/j.1469-8137.1968.tb06384.x. DOI
Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005;168:521–530. doi: 10.1002/jpln.200420485. DOI
Christian M., Steffens B., Schenck D., Burmester S., Böttger M., Lüthen H. How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol. 2006;8:346–352. PubMed
Philippar K., Ivashikina N., Ache P., Christian M., Lüthen H., Palme K., Hedrich R. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 2004;37:815–827. doi: 10.1111/j.1365-313X.2003.02006.x. PubMed DOI
Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J.B., Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 2001;276:3215–3221. doi: 10.1074/jbc.M007303200. PubMed DOI
Reintanz B., Szyroki A., Ivashikina N., Ache P., Godde M., Becker D., Palme K., Hedrich R. AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc. Natl. Acad. Sci. USA. 2002;99:4079–4084. doi: 10.1073/pnas.052677799. PubMed DOI PMC
Lagarde D., Basset M., Lepetit M., Conejero G., Gaymard F., Astruc S., Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996;9:195–203. doi: 10.1046/j.1365-313X.1996.09020195.x. PubMed DOI
Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J.-M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992;256:663–665. doi: 10.1126/science.1585180. PubMed DOI
Hirsch R.E., Lewis B.D., Spalding E.P., Sussman M.R. A role for the AKT1 potassium channel in plant nutrition. Science. 1998;280:918–921. doi: 10.1126/science.280.5365.918. PubMed DOI
Geiger D., Becker D., Vosloh D., Gambale F., Palme K., Rehers M., Anschuetz U., Dreyer I., Kudla J., Hedrich R. Heteromeric AtKC1· AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J. Biol. Chem. 2009;284:21288–21295. doi: 10.1074/jbc.M109.017574. PubMed DOI PMC
Rehman R.U., Stigliano E., Lycett G.W., Sticher L., Sbano F., Faraco M., Dalessandro G., Di Sansebastiano G.P. Tomato Rab11a characterization evidenced a difference between SYP121-dependent and SYP122-dependent exocytosis. Plant Cell Physiol. 2008;49:751–766. doi: 10.1093/pcp/pcn051. PubMed DOI
Sutter J.U., Campanoni P., Tyrrell M., Blatt M.R. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell. 2006;18:935–954. doi: 10.1105/tpc.105.038950. PubMed DOI PMC
Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z., Johansson I., Blatt M.R. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell. 2009;21:2859–2877. doi: 10.1105/tpc.109.066118. PubMed DOI PMC
Grefen C., Chen Z., Honsbein A., Donald N., Hills A., Blatt M.R. A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell. 2010;22:3076–3092. doi: 10.1105/tpc.110.077768. PubMed DOI PMC
Grefen C., Karnik R., Larson E., Lefoulon C., Wang Y., Waghmare S., Zhang B., Hills A., Blatt M.R. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nat. Plants. 2015;1:15108. doi: 10.1038/nplants.2015.108. PubMed DOI
Huisman R., Bisseling T. Growth and development: Close relations of secretion and K+ Nat. Plants. 2015;1:15113. doi: 10.1038/nplants.2015.113. PubMed DOI
Lefoulon C., Waghmare S., Karnik R., Blatt M.R. Gating control and K+ uptake by the KAT1 K+ channel leaveraged through membrane anchoring of the trafficking protein SYP121. Plant Cell Environ. 2018;41:2668–2677. doi: 10.1111/pce.13392. PubMed DOI PMC
Zhang B., Karnik R., Wang Y., Wallmeroth N., Blatt M.R., Grefen C. The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ channels to moderate K+ current at the plasma membrane. Plant Cell. 2015;27:1697–1717. doi: 10.1105/tpc.15.00305. PubMed DOI PMC
Karnik R., Waghmare S., Zhang B., Larson E., Lefoulon C., Gonzalez W., Blatt M.R. Commandeering channel voltage sensors for secretion, cell turgor, and volume control. Trends Plant Sci. 2017;22:81–95. doi: 10.1016/j.tplants.2016.10.006. PubMed DOI PMC
Hachez C., Laloux T., Reinhardt H., Cavez D., Degand H., Grefen C., De Rycke R., Inzé D., Blatt M.R., Russinova E. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2; 7 to modulate the cell membrane water permeability. Plant Cell. 2014;26:3132–3147. doi: 10.1105/tpc.114.127159. PubMed DOI PMC
Datta S., Kim C.M., Pernas M., Pires N.D., Proust H., Tam T., Vijayakumar P., Dolan L. Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil. 2011;346:1–14. doi: 10.1007/s11104-011-0845-4. DOI
Høgh-Jensen H., Pedersen M.B. Morphological plasticity by crop plants and their potassium use efficiency. J. Plant Nutr. 2003;26:969–984. doi: 10.1081/PLN-120020069. DOI
Klinsawang S., Sumranwanich T., Wannaro A., Saengwilai P. Effects of root hair length on potassium acquisition in rice (Oryza sativa L.) Appl. Ecol. Environ. Res. 2018;16:1609–1620. doi: 10.15666/aeer/1602_16091620. DOI
Balcerowicz D., Schoenaers S., Vissenberg K. Cell fate determination and the switch from diffuse growth to planar polarity in Arabidopsis root epidermal cells. Front. Plant Sci. 2015;6:1163–1176. doi: 10.3389/fpls.2015.01163. PubMed DOI PMC
Schoenaers S., Balcerowicz D., Vissenberg K. Molecular mechanisms regulating root hair tip growth: A comparison with pollen tubes. In: Obermeyer G., Feijó J., editors. Pollen Tip Growth: From Biophysical Aspects to Systems Biology. Springer International Publishing; Cham, Switzerland: 2017. pp. 167–243.
Hoth S., Dreyer I., Dietrich P., Becker D., Müller-Röber B., Hedrich R. Molecular basis of plant-specific acid activation of K+ uptake channels. Proc. Natl. Acad. Sci. USA. 1997;94:4806–4810. doi: 10.1073/pnas.94.9.4806. PubMed DOI PMC
Bibikova T.N., Jacob T., Dahse I., Gilroy S. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development. 1998;125:2925–2934. PubMed
Rigas S., Ditengou F.A., Ljung K., Daras G., Tietz O., Palme K., Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol. 2013;197:1130–1141. doi: 10.1111/nph.12092. PubMed DOI
Daras G., Rigas S., Tsitsekian D., Iacovides T.A., Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway. Plant Sci. 2015;231:131–137. doi: 10.1016/j.plantsci.2014.11.017. PubMed DOI
Nieves-Cordones M., Rodenas R., Chavanieu A., Rivero R.M., Martinez V., Gaillard I., Rubio F. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front. Plant Sci. 2016;7:127. doi: 10.3389/fpls.2016.00127. PubMed DOI PMC
Grabov A. Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Ann. Bot. 2007;99:1035–1041. doi: 10.1093/aob/mcm066. PubMed DOI PMC
Vicente-Agullo F., Rigas S., Desbrosses G., Dolan L., Hatzopoulos P., Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 2004;40:523–535. doi: 10.1111/j.1365-313X.2004.02230.x. PubMed DOI
Müller M., Schmidt W. Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol. 2004;134:409–419. doi: 10.1104/pp.103.029066. PubMed DOI PMC
Lee R.D., Cho H.T. Auxin, the organizer of the hormonal/environmental signals for root hair growth. Front. Plant Sci. 2013;4:448. doi: 10.3389/fpls.2013.00448. PubMed DOI PMC
Dharmasiri N., Dharmasiri S., Weijers D., Lechner E., Yamada M., Hobbie L., Ehrismann J.S., Jurgens G., Estelle M. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell. 2005;9:109–119. doi: 10.1016/j.devcel.2005.05.014. PubMed DOI
Hodge A., Berta G., Doussan C., Merchan F., Crespi M. Plant root growth, architecture and function. Plant Soil. 2009;321:153–187. doi: 10.1007/s11104-009-9929-9. DOI
Schachtman D.P. The role of ethylene in plant responses to K+ deficiency. Front. Plant Sci. 2015;6:1153. doi: 10.3389/fpls.2015.01153. PubMed DOI PMC
Alonso J.M., Hirayama T., Roman G., Nourizadeh S., Ecker J.R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284:2148–2152. doi: 10.1126/science.284.5423.2148. PubMed DOI
Guzman P., Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2:513–523. PubMed PMC
Shin R., Schachtman D.P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA. 2004;101:8827–8832. doi: 10.1073/pnas.0401707101. PubMed DOI PMC
Shin R., Berg R.H., Schachtman D.P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 2005;46:1350–1357. doi: 10.1093/pcp/pci145. PubMed DOI
Hermans C., Hammond J.P., White P.J., Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006;11:610–617. doi: 10.1016/j.tplants.2006.10.007. PubMed DOI
Jordan-Meille L., Martineau E., Bornot Y., Lavres J., Abreu-Junior C., Domec J.-C. How does water-stressed corn respond to potassium nutrition? A shoot-root scale approach study under controlled conditions. Agriculture. 2018;8:180. doi: 10.3390/agriculture8110180. DOI
Zhao X.-h., Qiu H., Wen J., Wang X., Du Q., Wang J., Wang Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J. Integr. Agr. 2016;15:785–794. doi: 10.1016/S2095-3119(15)61246-1. DOI
Amtmann A., Troufflard S., Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant. 2008;133:682–691. doi: 10.1111/j.1399-3054.2008.01075.x. PubMed DOI
Rengel Z., Damon P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008;133:624–636. doi: 10.1111/j.1399-3054.2008.01079.x. PubMed DOI
Zorb C., Senbayram M., Peiter E. Potassium in agriculture - Status and perspectives. J. Plant Physiol. 2014;171:656–669. doi: 10.1016/j.jplph.2013.08.008. PubMed DOI
Chen J., Gabelman W.H. Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency. Sci. Hort. 2000;83:213–225. doi: 10.1016/S0304-4238(99)00079-5. DOI
Chen J., Gabelman W. Isolation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil. 1995;176:65–70. doi: 10.1007/BF00017676. DOI
Fernández F.G., Brouder S.M., Volenec J.J., Beyrouty C.A., Hoyum R. Root and shoot growth, seed composition, and yield components of no-till rainfed soybean under variable potassium. Plant Soil. 2009;322:125–138. doi: 10.1007/s11104-009-9900-9. DOI
Liu C., Tu B., Wang X., Jin J., Li Y., Zhang Q., Liu X., Ma B. Potassium translocation combined with specific root uptake is responsible for the high potassium efficiency in vegetable soybean. Crop Pasture Sci. 2019;70:516–525. doi: 10.1071/CP19042. DOI
Jia Y.B., Yang X.E., Feng Y., Jilani G. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. J. Zhejiang Uni. Sci. B. 2008;9:427–434. doi: 10.1631/jzus.B0710636. PubMed DOI PMC
Song W., Xue R., Song Y., Bi Y., Liang Z., Meng L., Dong C., Wang C., Liu G., Dong J., et al. Differential response of first-order lateral root elongation to low potassium involves nitric oxide in two tobacco cultivars. J. Plant Growth Regul. 2018;37:114–127. doi: 10.1007/s00344-017-9711-9. DOI
Garcia K., Ané J.M. Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Plant Signal. Behav. 2017;12:e1307494. doi: 10.1080/15592324.2017.1307494. PubMed DOI PMC
Wang Y., Wang Y., Li B., Xiong C., Eneji A.E., Zhang M., Li F., Tian X., Li Z. The cotton high-affinity K+ transporter, GhHAK5a, is essential for shoot regulation of K+ uptake in root under potassium deficiency. Plant Cell Physiol. 2019;60:888–899. doi: 10.1093/pcp/pcz003. PubMed DOI
Zhang H., Xiao W., Yu W., Yao L., Li L., Wei J., Li R. Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress. Plant Cell Rep. 2018;37:1533–1546. doi: 10.1007/s00299-018-2325-2. PubMed DOI
Nieves-Cordones M., Martínez-Cordero M.A., Martínez V., Rubio F. An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci. 2007;172:273–280. doi: 10.1016/j.plantsci.2006.09.003. DOI
Wang T.-B., Gassmann W., Rubio F., Schroeder J.I., Glass A.D. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol. 1998;118:651–659. doi: 10.1104/pp.118.2.651. PubMed DOI PMC
Feng H., Tang Q., Cai J., Xu B., Xu G., Yu L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta. 2019;250:549–561. doi: 10.1007/s00425-019-03194-3. PubMed DOI
Lynch J.P. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol. 2019;223:548–564. doi: 10.1111/nph.15738. PubMed DOI
Lima J.E., Kojima S., Takahashi H., von Wirén N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell. 2010;22:3621–3633. doi: 10.1105/tpc.110.076216. PubMed DOI PMC
Krouk G., Crawford N.M., Coruzzi G.M., Tsay Y.-F. Nitrate signaling: adaptation to fluctuating environments. Curr. Opin. Plant Biol. 2010;13:265–272. doi: 10.1016/j.pbi.2009.12.003. PubMed DOI
Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., Mounier E., Hoyerova K., Tillard P., Leon S., Ljung K. Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Dev. Cell. 2010;18:927–937. PubMed
Postma J.A., Lynch J.P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol. 2011;156:1190–1201. doi: 10.1104/pp.111.175489. PubMed DOI PMC
Schneider H.M., Postma J.A., Wojciechowski T., Kuppe C., Lynch J.P. Root cortical senescence improves growth under suboptimal availability of N, P, and K. Plant Physiol. 2017;174:2333–2347. doi: 10.1104/pp.17.00648. PubMed DOI PMC
Barberon M. The endodermis as a checkpoint for nutrients. New Phytol. 2017;213:1604–1610. doi: 10.1111/nph.14140. PubMed DOI
Barberon M., Vermeer J.E.M., De Bellis D., Wang P., Naseer S., Andersen T.G., Humbel B.M., Nawrath C., Takano J., Salt D.E. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell. 2016;164:447–459. doi: 10.1016/j.cell.2015.12.021. PubMed DOI
Qi Z., Hampton C.R., Shin R., Barkla B.J., White P.J., Schachtman D.P. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot. 2008;59:595–607. doi: 10.1093/jxb/erm330. PubMed DOI
Chen G., Hu Q., Luo L., Yang T., Zhang S., Hu Y., Yu L., Xu G. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 2015;38:2747–2765. doi: 10.1111/pce.12585. PubMed DOI
Shin R., Burch A.Y., Huppert K.A., Tiwari S.B., Murphy A.S., Guilfoyle T.J., Schachtman D.P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell. 2007;19:2440–2453. doi: 10.1105/tpc.107.050963. PubMed DOI PMC
Song W., Liu S., Meng L., Xue R., Wang C., Liu G., Dong C., Wang S., Dong J., Zhang Y. Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution. Plant Soil. 2015:163–173. doi: 10.1007/s11104-015-2579-1. DOI
Van der Graaff E., Laux T., Rensing S.A. The WUS homeobox-containing (WOX) protein family. Genome Biol. 2009;10:248. doi: 10.1186/gb-2009-10-12-248. PubMed DOI PMC
Chen G., Feng H., Hu Q., Qu H., Chen A., Yu L., Xu G. Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development. Plant Biotechnol. J. 2015;13:833–848. doi: 10.1111/pbi.12320. PubMed DOI
Zhang L., Li G., Wang M., Di D., Sun L., Kronzucker H.J., Shi W. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. New Phytol. 2018;219:259–274. doi: 10.1111/nph.15157. PubMed DOI
Zheng Y., Drechsler N., Rausch C., Kunze R. The Arabidopsis nitrate transporter NPF7. 3/NRT1. 5 is involved in lateral root development under potassium deprivation. Plant Signal. and Behav. 2016;11:2832–2847. doi: 10.1080/15592324.2016.1176819. PubMed DOI PMC
Lin S.H., Kuo H.F., Canivenc G., Lin C.S., Lepetit M., Hsu P.K., Tillard P., Lin H.L., Wang Y.Y., Tsai C.B., et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell. 2008;20:2514–2528. doi: 10.1105/tpc.108.060244. PubMed DOI PMC
Drechsler N., Zheng Y., Bohner A., Nobmann B., von Wiren N., Kunze R., Rausch C. Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol. 2015;169:2832–2847. PubMed PMC
Meng S., Peng J.S., He Y.N., Zhang G.B., Yi H.Y., Fu Y.L., Gong J.M. Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level. Mol. Plant. 2016;9:461–470. doi: 10.1016/j.molp.2015.12.015. PubMed DOI
Cui Y.N., Li X.T., Yuan J.Z., Wang F.Z., Wang S.M., Ma Q. Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis. Biochem. Biophys. Res. Commun. 2019;508:314–319. doi: 10.1016/j.bbrc.2018.11.118. PubMed DOI
Greenway H., Pitman M. Potassium retranslocation in seedlings of Hordeum vulgare. Austr. J. Biol. Sci. 1965;18:235–247. doi: 10.1071/BI9650235. DOI
Jeschke W.D., Atkins C.A., Pate J.S. Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J. Plant Physiol. 1985;117:319–330. doi: 10.1016/S0176-1617(85)80068-7. PubMed DOI
Jeschke W.D., Wolf O., Hartung W. Effect of NaCI salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lupinus albus L. J. Exp. Bot. 1992;43:777–788. doi: 10.1093/jxb/43.6.777. DOI
Jeschke W.D., Pate J.S. Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J. Exp. Bot. 1991;42:1105–1116. doi: 10.1093/jxb/42.9.1105. DOI
Wolf O., Munns R., Tonnet M.L., Jeschke W.D. The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. J. Exp. Bot. 1991;42:697–704. doi: 10.1093/jxb/42.6.697. DOI
Johansson I., Wulfetange K., Porée F., Michard E., Gajdanowicz P., Lacombe B., Sentenac H., Thibaud J.-B., Mueller-Roeber B., Blatt M.R., et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J. 2006;46:269–281. doi: 10.1111/j.1365-313X.2006.02690.x. PubMed DOI
Drew M.C., Saker L.R. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: Evidence of non-allosteric regulation. Planta. 1984;160:500–507. doi: 10.1007/BF00411137. PubMed DOI
Martineau E., Domec J.-C., Bosc A., Dannoura M., Gibon Y., Bénard C., Jordan-Meille L. The role of potassium on maize leaf carbon exportation under drought condition. Acta Physiol. Plant. 2017;39:219–232. doi: 10.1007/s11738-017-2515-5. DOI
Berg W.K., Lissbrant S., Cunningham S.M., Brouder S.M., Volenec J.J. Phosphorus and potassium effects on taproot C and N reserve pools and long-term persistence of alfalfa (Medicago sativa L.) Plant Sci. 2018;272:301–308. doi: 10.1016/j.plantsci.2018.02.026. PubMed DOI
Mengel K., Haeder H.-E. Effect of potassium supply on the rate of phloem sap exudation and the composition of phloem sap of Ricinus communis. Plant Physiol. 1977;59:282–284. doi: 10.1104/pp.59.2.282. PubMed DOI PMC
Mengel K. Effect of potassium on the assimilate conduction to storage tissue. Ber. Deut. Bot. Ges. 1980;93:353–362.
Doman D.C., Geiger D.R. Effect of exogenously supplied foliar potassium on phloem loading in Beta vulgaris L. Plant Physiol. 1979;64:528–533. doi: 10.1104/pp.64.4.528. PubMed DOI PMC
Epron D., Cabral O.M., Laclau J.P., Dannoura M., Packer A.P., Plain C., Battie-Laclau P., Moreira M.Z., Trivelin P.C., Bouillet J.P., et al. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol. 2016;36:6–21. doi: 10.1093/treephys/tpv090. PubMed DOI
Tian H., Baxter I.R., Lahner B., Reinders A., Salt D.E., Ward J.M. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell. 2010;22:3963–3979. doi: 10.1105/tpc.110.080010. PubMed DOI PMC
Deeken R., Geiger D., Fromm J., Koroleva O., Ache P., Langenfeld-Heyser R., Sauer N., May S.T., Hedrich R. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta. 2002;216:334–344. doi: 10.1007/s00425-002-0895-1. PubMed DOI
Deeken R., Sanders C., Ache P., Hedrich R. Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Plant J. 2000;23:285–290. doi: 10.1046/j.1365-313x.2000.00791.x. PubMed DOI
Dreyer I., Gomez-Porras J.L., Riedelsberger J. The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytol. 2017;216:1049–1053. doi: 10.1111/nph.14667. PubMed DOI
Gajdanowicz P., Michard E., Sandmann M., Rocha M., Corrêa L.G.G., Ramírez-Aguilar S.J., Gomez-Porras J.L., González W., Thibaud J.-B., Van Dongen J.T. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc. Natl. Acad. Sci. USA. 2011;108:864–869. doi: 10.1073/pnas.1009777108. PubMed DOI PMC
Lynch J., Läuchli A. Potassium transport in salt-stressed barley roots. Planta. 1984;161:295–301. doi: 10.1007/BF00398718. PubMed DOI
Shi H., Quintero F.J., Pardo J.M., Zhu J.-K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell. 2002;14:465–477. doi: 10.1105/tpc.010371. PubMed DOI PMC
Mäser P., Eckelman B., Vaidyanathan R., Horie T., Fairbairn D.J., Kubo M., Yamagami M., Yamaguchi K., Nishimura M., Uozumi N. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett. 2002;531:157–161. doi: 10.1016/S0014-5793(02)03488-9. PubMed DOI
Sunarpi H.T., Motoda J., Kubo M., Yang H., Yoda K., Horie R., Chan W.Y., Leung H.Y., Hattori K., Konomi M. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 2005;44:928–938. doi: 10.1111/j.1365-313X.2005.02595.x. PubMed DOI
Berthomieu P., Conéjéro G., Nublat A., Brackenbury W.J., Lambert C., Savio C., Uozumi N., Oiki S., Yamada K., Cellier F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 2003;22:2004–2014. doi: 10.1093/emboj/cdg207. PubMed DOI PMC
Shabala S., Pottosin I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014;151:257–279. doi: 10.1111/ppl.12165. PubMed DOI
Gersani M., Graham E.A., Nobel P.S. Growth responses of individual roots of Opuntia ficus-indica to salinity. Plant Cell Environ. 1993;16:827–834. doi: 10.1111/j.1365-3040.1993.tb00504.x. DOI
Rubinigg M., Wenisch J., Elzenga J.T.M., Stulen I. NaCl salinity affects lateral root development in Plantago maritima. Funct. Plant Biol. 2004;31:775–780. doi: 10.1071/FP03222. PubMed DOI
Zolla G., Heimer Y.M., Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J. Exp. Bot. 2010;61:211–224. doi: 10.1093/jxb/erp290. PubMed DOI PMC
Rubio F., Gassmann W., Schroeder J.I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995;270:1660–1663. doi: 10.1126/science.270.5242.1660. PubMed DOI
Zhu J.-K., Liu J., Xiong L. Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell. 1998;10:1181–1191. doi: 10.1105/tpc.10.7.1181. PubMed DOI PMC
Liu J., Ishitani M., Halfter U., Kim C.-S., Zhu J.-K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 2000;97:3730–3734. doi: 10.1073/pnas.97.7.3730. PubMed DOI PMC
Qiu Q.-S., Guo Y., Dietrich M.A., Schumaker K.S., Zhu J.-K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA. 2002;99:8436–8441. doi: 10.1073/pnas.122224699. PubMed DOI PMC
Halfter U., Ishitani M., Zhu J.-K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA. 2000;97:3735–3740. doi: 10.1073/pnas.97.7.3735. PubMed DOI PMC
Cheng N.H., Pittman J.K., Zhu J.K., Hirschi K.D. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J. Biol. Chem. 2004;279:2922–2926. doi: 10.1074/jbc.M309084200. PubMed DOI
Coskun D., Britto D.T., Li M., Oh S., Kronzucker H.J. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Plant Physiol. 2013;162:496–511. doi: 10.1104/pp.113.215913. PubMed DOI PMC
Britto D.T., Kronzucker H.J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 2002;159:567–584. doi: 10.1078/0176-1617-0774. DOI
Britto D.T., Kronzucker H.J. Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci. 2006;11:529–534. doi: 10.1016/j.tplants.2006.09.011. PubMed DOI
Liu Y., Lai N., Gao K., Chen F., Yuan L., Mi G. Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLoS ONE. 2013;8:6031–6042. doi: 10.1371/journal.pone.0061031. PubMed DOI PMC
Li Q., LI B.H., Kronzucker H.J., SHI W.M. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity. Plant Cell Environ. 2010;33:1529–1542. doi: 10.1111/j.1365-3040.2010.02162.x. PubMed DOI
Roosta H., Schjoerring J.K. Root carbon enrichment alleviates ammonium toxicity in cucumber plants. J. Plant Nutr. 2008;31:941–958. doi: 10.1080/01904160802043270. DOI
Zheng X., He K., Kleist T., Chen F., Luan S. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Environ. 2015;38:474–486. doi: 10.1111/pce.12389. PubMed DOI
Roosta H.R., Schjoerring J.K. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. J. Plant Nutr. 2007;30:1933–1951. doi: 10.1080/01904160701629211. DOI
Szczerba M.W., Britto D.T., Balkos K.D., Kronzucker H.J. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport. J. Exp. Bot. 2008;59:303–313. doi: 10.1093/jxb/erm309. PubMed DOI
Szczerba M.W., Britto D.T., Ali S.A., Balkos K.D., Kronzucker H.J. NH4+-stimulated and-inhibited components of K+ transport in rice (Oryza sativa L.) J. Exp. Bot. 2008;59:3415–3423. doi: 10.1093/jxb/ern190. PubMed DOI PMC
Balkos K.D., Britto D.T., Kronzucker H.J. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72) Plant Cell Environ. 2010;33:23–34. PubMed
Hoopen F.t., Cuin T.A., Pedas P., Hegelund J.N., Shabala S., Schjoerring J.K., Jahn T.P. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J. Exp. Bot. 2010;61:2303–2315. doi: 10.1093/jxb/erq057. PubMed DOI PMC
Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Perin C., Sentenac H., Very A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J. 2017;92:43–56. doi: 10.1111/tpj.13632. PubMed DOI
Yasunari T.J., Stohl A., Hayano R.S., Burkhart J.F., Eckhardt S., Yasunari T. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. USA. 2011;108:19530–19534. doi: 10.1073/pnas.1112058108. PubMed DOI PMC
Vakulovsky S., Nikitin A., Chumichev V., Katrich I.Y., Voitsekhovich O., Medinets V., Pisarev V., Bovkum L., Khersonsky E. Cesium-137 and strontium-90 contamination of water bodies in the areas affected by releases from the Chernobyl nuclear power plant accident: an overview. J. Environ. Radioact. 1994;23:103–122. doi: 10.1016/0265-931X(94)90055-8. DOI
Hampton C.R., Bowen H.C., Broadley M.R., Hammond J.P., Mead A., Payne K.A., Pritchard J., White P.J. Cesium toxicity in Arabidopsis. Plant Physiol. 2004;136:3824–3837. doi: 10.1104/pp.104.046672. PubMed DOI PMC
Zhu Y.G., Smolders E. Plant uptake of radiocaesium: A review of mechanisms, regulation and application. J. Exp. Bot. 2000;51:1635–1645. doi: 10.1093/jexbot/51.351.1635. PubMed DOI
Kobayashi R., Kobayashi N.I., Tanoi K., Masumori M., Tange T. Potassium supply reduces cesium uptake in Konara oak not by an alteration of uptake mechanism, but by the uptake competition between the ions. J. Environ. Radioact. 2019;208:6032–6040. doi: 10.1016/j.jenvrad.2019.106032. PubMed DOI
Perrenoud S. Potassium and Plant Health. International Potash Institute; Bern, Switzerland: 1977. pp. 1–5.
Armengaud P., Breitling R., Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 2004;136:2556–2576. doi: 10.1104/pp.104.046482. PubMed DOI PMC
Troufflard S., Mullen W., Larson T.R., Graham I.A., Crozier A., Amtmann A., Armengaud P. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol. 2010;10:172–185. doi: 10.1186/1471-2229-10-172. PubMed DOI PMC
Khan G.A., Vogiatzaki E., Glauser G., Poirier Y. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol. 2016;171:632–644. doi: 10.1104/pp.16.00278. PubMed DOI PMC
Staswick P.E., Su W., Howell S.H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA. 1992;89:6837–6840. doi: 10.1073/pnas.89.15.6837. PubMed DOI PMC