Emergence of Rare Bovine-Human Reassortant DS-1-Like Rotavirus A Strains with G8P[8] Genotype in Human Patients in the Czech Republic
Language English Country Switzerland Media electronic
Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't
PubMed
31683946
PubMed Central
PMC6893433
DOI
10.3390/v11111015
PII: v11111015
Knihovny.cz E-resources
- Keywords
- Central Europe, G8, bovine–human reassortants, gastroenteritis, rotavirus A,
- MeSH
- Antigens, Viral genetics MeSH
- Feces virology MeSH
- Phylogeny MeSH
- Gastroenteritis epidemiology virology MeSH
- Genome, Viral genetics MeSH
- Genotype MeSH
- Humans MeSH
- Prevalence MeSH
- Reassortant Viruses genetics isolation & purification MeSH
- RNA, Viral genetics MeSH
- Rotavirus Infections epidemiology virology MeSH
- Rotavirus genetics isolation & purification MeSH
- Cattle MeSH
- Capsid Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Antigens, Viral MeSH
- RNA, Viral MeSH
- Capsid Proteins MeSH
- VP4 protein, Rotavirus MeSH Browser
- VP7 protein, Rotavirus MeSH Browser
Group A Rotaviruses (RVA) are the leading cause of acute gastroenteritis in children and a major cause of childhood mortality in low-income countries. RVAs are mostly host-specific, but interspecies transmission and reassortment between human and animal RVAs significantly contribute to their genetic diversity. We investigated the VP7 and VP4 genotypes of RVA isolated from 225 stool specimens collected from Czech patients with gastroenteritis during 2016-2019. The most abundant genotypes were G1P[8] (42.7%), G3P[8] (11.1%), G9P[8] (9.8%), G2P[4] (4.4%), G4P[8] (1.3%), G12P[8] (1.3%), and, surprisingly, G8P[8] (9.3%). Sequence analysis of G8P[8] strains revealed the highest nucleotide similarity of all Czech G8 sequences to the G8P[8] rotavirus strains that were isolated in Vietnam in 2014/2015. The whole-genome backbone of the Czech G8 strains was determined with the use of next-generation sequencing as DS-1-like. Phylogenetic analysis of all segments clustered the Czech isolates with RVA strains that were formerly described in Southeast Asia, which had emerged following genetic reassortment between bovine and human RVAs. This is the first time that bovine-human DS1-like G8P[8] strains were detected at a high rate in human patients in Central Europe. Whether the emergence of this unusual genotype reflects the establishment of a new RVA strain in the population requires the continuous monitoring of rotavirus epidemiology.
See more in PubMed
Soriano-Gabarró M., Mrukowicz J., Vesikari T., Verstraeten T. Burden of rotavirus disease in European Union countries. Pediatr. Infect. Dis. J. 2006;25:S7–S11. doi: 10.1097/01.inf.0000197622.98559.01. PubMed DOI
Troeger C., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., Armah G., Bines J.E., Brewer T.G., Colombara D.V., et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018;172:958–965. doi: 10.1001/jamapediatrics.2018.1960. PubMed DOI PMC
Patel M.M., Steele D., Gentsch J.R., Wecker J., Glass R.I., Parashar U.D. Real-world impact of rotavirus vaccination. Pediatr. Infect. Dis. J. 2011;30:S1–S5. doi: 10.1097/INF.0b013e3181fefa1f. PubMed DOI
Clark A., Black R., Tate J., Roose A., Kotloff K., Lam D., Blackwelder W., Parashar U., Lanata C., Kang G., et al. Estimating global, regional and national rotavirus deaths in children aged <5 years: Current approaches, new analyses and proposed improvements. PLoS ONE. 2017;12:e0183392. doi: 10.1371/journal.pone.0183392. PubMed DOI PMC
Tate J.E., Burton A.H., Boschi-Pinto C., Parashar U.D. World Health Organization-Coordinated Global Rotavirus Surveillance Network. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000–2013. Clin. Infect. Dis. 2016;62:S96–S105. PubMed PMC
Desselberger U. Rotaviruses. Virus Res. 2014;190:75–96. doi: 10.1016/j.virusres.2014.06.016. PubMed DOI
Rotavirus Classification Working Group Newly Assigned Genotypes. [(accessed on 11 July 2019)]; List of Accepted Genotypes. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification.
Ianiro G., Micolano R., Di Bartolo I., Scavia G., Monini M. RotaNet-Italy Study Group. Group A rotavirus surveillance before vaccine introduction in Italy, September 2014 to August 2017. Eurosurveillance. 2019;24:1800418. doi: 10.2807/1560-7917.ES.2019.24.15.1800418. PubMed DOI PMC
Iturriza-Gómara M., Dallman T., Bányai K., Bӧttiger B., Buesa J., Diedrich S., Fiore L., Johansen K., Koopmans M., Korsun N., et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol. Infect. 2011;139:895–909. doi: 10.1017/S0950268810001810. PubMed DOI
Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Bányai K., Estes M.K., Gentsch J.R., Iturriza-Gómara M., Kirkwood C., Martella V., et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008;153:1621–1629. doi: 10.1007/s00705-008-0155-1. PubMed DOI PMC
Matthijnssens J., Ciarlet M., Heiman E., Arijs I., Delbeke T., McDonald S.M., Palombo E.A., Iturriza-Gómara M., Maes P., Patton J.T., et al. Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J. Virol. 2008;82:3204–3219. doi: 10.1128/JVI.02257-07. PubMed DOI PMC
Nakagomi T., Doan Y.H., Dove W., Ngwira B., Iturriza-Gómara M., Nakagomi O., Cunliffe N.A. G8 rotaviruses with conserved genotype constellations detected in Malawi over 10 years (1997–2007) display frequent gene reassortment among strains co-circulating in humans. J. Gen. Virol. 2013;94:1273–1295. doi: 10.1099/vir.0.050625-0. PubMed DOI PMC
Santos N., Lima R.C., Pereira C.F., Gouvea V. Detection of rotavirus types G8 and G10 among Brazilian children with diarrhea. J. Clin. Microbiol. 1998;36:2727–2729. PubMed PMC
Gómez M.M., Volotão E.M., Lima de Mendonça M.C., Tort L.F.L., da Silva M.F.M., Leite J.P.G. Detection of uncommon rotavirus A strains P [8] G8 and P [4] G8 in the city of Rio de Janeiro, 2002. J. Med. Virol. 2010;82:1272–1276. doi: 10.1002/jmv.21769. PubMed DOI
Lucero Y., O’Ryan M., Liparoti G., Huerta N., Mamani N., Ramani S., Lagomarcino A.J., Del Canto F., Quense J. Predominance of Rotavirus G8P [8] in a city of Chile, a country without rotavirus vaccination. J. Pediatr. 2019;204:298–300. doi: 10.1016/j.jpeds.2018.08.037. PubMed DOI
Tacharoenmuang R., Komoto S., Guntapong R., Ide T., Sinchai P., Upachai S., Yoshikawa T., Tharmaphornpilas P., Sangkitporn S., Taniguchi K. Full Genome Characterization of Novel DS-1-Like G8P[8] Rotavirus Strains that Have Emerged in Thailand: Reassortment of Bovine and Human Rotavirus Gene Segments in Emerging DS-1-Like Intergenogroup Reassortant Strains. PLoS ONE. 2016;11:e0165826. doi: 10.1371/journal.pone.0165826. PubMed DOI PMC
Kondo K., Tsugawa T., Ono M., Ohara T., Fujibayashi S., Tahara Y. Clinical and molecular characteristics of human Rotavirus G8P [8] outbreak strain, Japan, 2014. Emerg. Infect. Dis. 2017;23:968–972. doi: 10.3201/eid2306.160038. PubMed DOI PMC
Hoa-Tran T.N., Nakagomi T., Vu H.M., Do L.P., Gauchan P., Agbemabiese C.A., Nguyen T.T.T., Nakagomi O., Thanh N.T.H. Abrupt emergence and predominance in Vietnam of rotavirus A strains possessing a bovine-like G8 on a DS-1-like background. Arch. Virol. 2016;161:479–482. doi: 10.1007/s00705-015-2682-x. PubMed DOI
Lee S.K., Choi S., Shin S.H., Lee E.J., Hyun J., Kim J.S., Kim H.S. Emergence of G8P [6] rotavirus strains in Korean neonates. Gut Pathog. 2018;10:27. doi: 10.1186/s13099-018-0255-8. PubMed DOI PMC
Delogu R., Lo Presti A., Ruggeri F.M., Cella E., Giovanetti M., Ciccozzi M., Ljubin-Sternak S., Bukovski-Simonoski S., Lukic-Grlic A., Ianiro G., et al. Full-genome characterization of a G8P[8] rotavirus that emerged among children with diarrhea in Croatia in 2006. J. Clin. Microbiol. 2013;51:1583–1588. doi: 10.1128/JCM.00396-13. PubMed DOI PMC
Steele A.D., Parker S.P., Peenze I., Pager C.T., Taylor M.B., Cubitt W.D. Comparative studies of human rotavirus serotype G8 strains recovered in South Africa and the United Kingdom. J. Gen. Virol. 1999;80:3029–3034. doi: 10.1099/0022-1317-80-11-3029. PubMed DOI
Steyer A., Poljsak-Prijatelj M., Bufon T.L., Marcun-Varda N., Marin J. Rotavirus genotypes in Slovenia: Unexpected detection of G8P [8] and G12P [8] genotypes. J. Med. Virol. 2007;79:626–632. doi: 10.1002/jmv.20811. PubMed DOI
Pietsch C., Petersen L., Patzer L., Liebert U.G. Molecular characteristics of German G8P [4] rotavirus strain GER1H-09 suggest that a genotyping and subclassification update is required for G8. J. Clin. Microbiol. 2009;47:3569–3576. doi: 10.1128/JCM.01471-09. PubMed DOI PMC
Ianiro G., Delogu R., Bonomo P., Castiglia P., Ruggeri F.M., Fiore L. Molecular characterization of human G8P [4] rotavirus strains in Italy: Proposal of a more complete subclassification of the G8 genotype in three major lineages. Infect. Genet. Evol. 2014;21:129–133. doi: 10.1016/j.meegid.2013.10.029. PubMed DOI
Moutelíková R., Dvořáková Heroldová M., Holá V., Sauer P., Prodělalová J. Human rotavirus A detection: Comparison of enzymatic immunoassay and rapid chromatographic test with two quantitative RT-PCR assays. Epidemiol. Mikrobiol. Imunol. 2018;67:110–113. PubMed
Fujii Y., Shimoike T., Takagi H., Murakami K., Todaka-Takai R., Park Y.B., Katayama K. Amplification of all 11 RNA segments of group A rotaviruses based on reverse transcription polymerase chain reaction. Microbiol. Immunol. 2012;56:630–638. doi: 10.1111/j.1348-0421.2012.00479.x. PubMed DOI
Gentsch J.R., Glass R.I., Woods P., Gouvea V., Gorziglia M., Flores J., Das B.K., Bhan M.K. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J. Clin. Microbiol. 1992;30:1365–1373. PubMed PMC
Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol. Biol. Evol. 1992;9:678–687. PubMed
Maes P., Matthijnssens J., Rahman M., Van Ranst M. RotaC: A web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol. 2009;9:238. doi: 10.1186/1471-2180-9-238. PubMed DOI PMC
Theuns S., Conceiçāo-Neto N., Zeller M., Heylen E., Roukaerts I.D.M., Desmarets L.M.B., Van Ranst M., Nauwynck H.J., Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. Infect. Genet. Evol. 2016;43:135–145. doi: 10.1016/j.meegid.2016.05.018. PubMed DOI PMC
Milne I., Stephen G., Bayer M., Cock P.J.A., Pritchard L., Cardle L., Shaw P.D., Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012. PubMed DOI
Dóró R., László B., Martella V., Leshem E., Gentsch J., Parashar U., Bányai K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 2014;28:446–461. doi: 10.1016/j.meegid.2014.08.017. PubMed DOI PMC
Chia G., Ho H.J., Ng C.G., Neo F.J.X., Win M.K., Cui L., Leo Y.S., Chow A. An unusual outbreak of rotavirus G8P [8] gastroenteritis in adults in an urban community, Singapore, 2016. J. Clin. Virol. 2018;105:57–63. doi: 10.1016/j.jcv.2018.06.004. PubMed DOI
Agbemabiese C.A., Nakagomi T., Doan Y.H., Nakagomi O. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan. Infect. Genet. Evol. 2015;35:184–193. doi: 10.1016/j.meegid.2015.07.033. PubMed DOI
Banyai K., Papp H., Dandar E., Molnar P., Mihaly I., Van Ranst M., Martella V., Matthijnssens J. Whole genome sequencing and phylogenetic analysis of a zoonotic human G8P [14] rotavirus strain. Infect. Genet. Evol. 2010;10:1140–1144. doi: 10.1016/j.meegid.2010.05.001. PubMed DOI
Matthijnssens J., Rahman M., Yang X., Delbeke T., Arijs I., Kabue J.P., Muyembe J.J., Van Ranst M. G8 rotavirus strains isolated in the Democratic Republic of Congo belong to the DS-1-like genogroup. J. Clin. Microbiol. 2006;44:1801–1809. doi: 10.1128/JCM.44.5.1801-1809.2006. PubMed DOI PMC
Esona M.D., Geyer A., Page N., Trabelsi A., Fodha I., Aminu M., Agbaya V.A., Tsion B., Kerin T.K., Armah G.E., et al. Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses. J. Med. Virol. 2009;81:937–951. doi: 10.1002/jmv.21468. PubMed DOI
Chitambar S.D., Arora R., Kolpe A.B., Yadav M.M., Raut C.G. Molecular characterization of unusual bovine group A rotavirus G8P [14] strains identified in western India: Emergence of P [14] genotype. Vet. Microbiol. 2011;148:384–388. doi: 10.1016/j.vetmic.2010.08.027. PubMed DOI
Komoto S., Pongsuwanna Y., Tacharoenmuang R., Guntapong R., Ide T., Higo-Moriguchi K., Tsuji T., Yoshikawa T., Taniguchi K. Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses. Vet. Microbiol. 2016;195:37–57. doi: 10.1016/j.vetmic.2016.09.003. PubMed DOI
Komoto S., Tacharoenmuang R., Guntapong R., Ide T., Haga K., Katayama K., Kato T., Ouchi Y., Kurahashi H., Tsuji T., et al. Emergence and characterization of unusual DS-1-like G1P[8] Rotavirus strains in children with diarrhea in Thailand. PLoS ONE. 2015;10:e141739. doi: 10.1371/journal.pone.0141739. PubMed DOI PMC
Wikipedia Overseas Vietnamese. [(accessed on 20 September 2019)]; Available online: https://en.wikipedia.org/wiki/Overseas_Vietnamese.