Cytogenetic Analysis Did Not Reveal Differentiated Sex Chromosomes in Ten Species of Boas and Pythons (Reptilia: Serpentes)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31731798
PubMed Central
PMC6896069
DOI
10.3390/genes10110934
PII: genes10110934
Knihovny.cz E-zdroje
- Klíčová slova
- boa, comparative genomic hybridization, evolution, fluorescence in situ hybridization, karyotype, microsatellites, python, rDNA, sex chromosomes, sex determination, telomeres,
- MeSH
- Boidae genetika MeSH
- genom genetika MeSH
- genová přestavba MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Homologous and differentiated ZZ/ZW sex chromosomes (or derived multiple neo-sex chromosomes) were often described in caenophidian snakes, but sex chromosomes were unknown until recently in non-caenophidian snakes. Previous studies revealed that two species of boas (Boa imperator, B. constrictor) and one species of python (Python bivittatus) independently evolved XX/XY sex chromosomes. In addition, heteromorphic ZZ/ZW sex chromosomes were recently revealed in the Madagascar boa (Acrantophis sp. cf. dumerili) and putatively also in the blind snake Myriopholis macrorhyncha. Since the evolution of sex chromosomes in non-caenophidian snakes seems to be more complex than previously thought, we examined ten species of pythons and boas representing the families Boidae, Calabariidae, Candoiidae, Charinidae, Pythonidae, and Sanziniidae by conventional and molecular cytogenetic methods, aiming to reveal their sex chromosomes. Our results show that all examined species do not possess sex-specific differences in their genomes detectable by the applied cytogenetic methods, indicating the presence of poorly differentiated sex chromosomes or even the absence of sex chromosomes. Interestingly, fluorescence in situ hybridization with telomeric repeats revealed extensive distribution of interstitial telomeric repeats in eight species, which are likely a consequence of intra-chromosomal rearrangements.
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Department of Zoology Faculty of Science Charles University 12844 Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences 27721 Liběchov Czech Republic
Zobrazit více v PubMed
Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 6 October 2019)];2019 Available online: http://www.reptile-database.org.
Heise P.J., Maxson L.R., Dowling H.G., Hedges S.B. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol. Biol. Evol. 1995;12:259–265. doi: 10.1093/oxfordjournals.molbev.a040202. PubMed DOI
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Harrington S.M., Reeder T.W. Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: New insights into convergent evolution of feeding morphology and limb reduction. Biol. J. Linn. Soc. 2017;121:379–394. doi: 10.1093/biolinnean/blw039. DOI
Pyron R.A., Hendry C.R., Chou V.M., Lemmon E.M., Lemmon A.R., Burbrink F.T. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia) Mol. Phylogenet. Evol. 2014;81:221–231. doi: 10.1016/j.ympev.2014.08.023. PubMed DOI
Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 6 October 2019)];2005 Available online: http://chromorep.univpm.it.
Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI
Rovatsos M., Johnson Pokorná M., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2017;56:117–125. doi: 10.1111/jzs.12180. DOI
O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Marshall Graves J.A., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Vicoso B., Emerson J.J., Zektser Y., Mahajan S., Bachtrog D. Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. doi: 10.1371/journal.pbio.1001643. PubMed DOI PMC
Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC
Singh L., Purdom F., Jones K.W. Satellite DNA and evolution of sex chromosomes. Chromosoma. 1976;59:43–62. doi: 10.1007/BF00327708. PubMed DOI
Singh L., Purdom I.F., Jones K.W. Sex chromosome associated satellite DNA: Evolution and conservation. Chromosoma. 1980;79:137–157. doi: 10.1007/BF01175181. PubMed DOI
Viana P.F., Ribeiro L.B., Souza G.M., Chalkidis H.M., Gross M.C., Feldberg E. Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS ONE. 2016;11:e0160274. doi: 10.1371/journal.pone.0160274. PubMed DOI PMC
Ohno S. Sex. Chromosomes and Sex-Linked Genes. Springer; Berlin, Germany: 1967. pp. 1–167.
Matsubara K., Tarui H., Toriba M., Yamada K., Nishida-Umehara C., Agata K., Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA. 2006;103:18190–18195. doi: 10.1073/pnas.0605274103. PubMed DOI PMC
Booth W., Million L., Reynolds R.G., Burghardt G.M., Vargo E.L., Schal C., Tzika A.C., Schuett G.W. Consecutive virgin births in the New World boid snake, the Colombian rainbow boa, Epicrates maurus. J. Hered. 2011;102:759–763. doi: 10.1093/jhered/esr080. PubMed DOI
Booth W., Johnson D.H., Moore S., Schal C., Vargo E.L. Evidence for viable, non-clonal but fatherless Boa constrictors. Biol. Lett. 2011;7:253–256. doi: 10.1098/rsbl.2010.0793. PubMed DOI PMC
Kinney M.E., Wack R.F., Grahn R.A., Lyons L. Parthenogenesis in a Brazilian rainbow boa (Epicrates cenchria cenchria) Zoo Biol. 2013;32:172–176. doi: 10.1002/zoo.21050. PubMed DOI
Booth W., Schuett G.W., Ridgway A., Buxton D.W., Castoe T.A., Bastone G., Bennett C., McMahan W. New insights on facultative parthenogenesis in pythons. Biol. J. Linn. Soc. 2014;112:461–468. doi: 10.1111/bij.12286. DOI
Mallery C.S., Jr., Carrillo M.M. A case study of sex-linkage in Python regius (Serpentes: Boidae), with new insights into sex determination in Henophidia. Phyllomedusa. 2016;15:29–42. doi: 10.11606/issn.2316-9079.v15i1p29-42. DOI
Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:1–6. doi: 10.1016/j.cub.2017.06.010. PubMed DOI
Mengden G.A., Stock A.D. Chromosomal evolution in Serpentes; a comparison of G and C chromosome banding patterns of some colubrid and boid genera. Chromosoma. 1980;79:53–64. doi: 10.1007/BF00328472. DOI
Augstenová B., Johnson Pokorná M., Altmanová M., Frynta D., Rovatsos M., Kratochvíl L. ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated. Evolution. 2018;72:1701–1707. doi: 10.1111/evo.13543. PubMed DOI
Matsubara K., Kumazawa Y., Ota H., Nishida C., Matsuda Y. Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in Serpentes. Cytogenet. Genome Res. 2019;157:98–106. doi: 10.1159/000496554. PubMed DOI
Valenzuela N., Badenhorst D., Montiel E.E., Literman R. Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta. Cytogenet. Genome Res. 2014;144:39–46. doi: 10.1159/000366076. PubMed DOI
Matsubara K., Nishida C., Matsuda Y., Kumazawa Y. Sex chromosome evolution in snakes inferred from divergence patterns of two gametologous genes and chromosome distribution of sex chromosome-linked repetitive sequences. Zool. Lett. 2016;2:19. doi: 10.1186/s40851-016-0056-1. PubMed DOI PMC
Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. PubMed PMC
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Mengden G.A. Ph.D. Thesis. Australian National University; Canberra, Australia: 1982. Chromosomal Evolution and the Phylogeny of Elapid Snakes; pp. 1–221. DOI
Reynolds R.G., Niemiler M.L., Revell L.J. Toward a Tree-of-Life for the boas and pythons: Multi locus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogenet. Evol. 2014;71:201–213. doi: 10.1016/j.ympev.2013.11.011. PubMed DOI
Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Lee L., Montiel E.E., Valenzuela N. Discovery of putative XX/XY male heterogamety in Emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in Emydura. Cytogenet. Genome Res. 2019;158:160–169. doi: 10.1159/000501891. PubMed DOI
Kawai A., Nishida-Umehara C., Ishijima J., Tsuda Y., Ota H., Matsuda Y. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 2007;117:92–102. doi: 10.1159/000103169. PubMed DOI
Literman R., Badenhorst D., Valenzuela N. qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol. Evol. 2014;5:872–880. doi: 10.1111/2041-210X.12228. DOI
Viana P.F., Ezaz T., Cioffi M.B., Almeida B.J., Feldberg E. Evolutionary insights of the ZW sex chromosomes in snakes: A new chapter added by the amazonian puffing snakes of the genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Charlesworth B. The evolution of sex chromosomes. Science. 1991;251:1030–1033. doi: 10.1126/science.1998119. PubMed DOI
Pokorná M., Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 2009;156:168–183. doi: 10.1111/j.1096-3642.2008.00481.x. DOI
Gorman G.C., Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.
Mezzasalma M., Andreone F., Glaw F., Petraccioli A., Odierna G., Guarino F.M. A karyological study of three typhlopid species with some inferences on chromosome evolution in blindsnakes (Scolecophidia) Zool. Anz. 2016;264:34–40. doi: 10.1016/j.jcz.2016.07.001. DOI
Gamble T., Zarkower D. Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol. Ecol. Res. 2014;14:902–913. doi: 10.1111/1755-0998.12237. PubMed DOI
Gamble T., Coryell J., Ezaz T., Lynch J., Scantlebury D.P., Zarkower D. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 2015;32:1296–1309. doi: 10.1093/molbev/msv023. PubMed DOI
Wilson C.A., Titus T., Batzel P., Postlethwait J.H., Raman R. A search for sex-linked loci in the agamid lizard, Calotes versicolor. Sex. Dev. 2019;13:143–150. doi: 10.1159/000500465. PubMed DOI
Watts P.C., Buley K.R., Sanderson S., Boardman W., Ciofi C., Gibson R. Parthenogenesis in Komodo dragons. Nature. 2006;444:1021–1022. doi: 10.1038/4441021a. PubMed DOI
Solari A.J. Sex. Chromosomes and Sex. Determination in Vertebrates. CRC Press; London, UK: 1993. pp. 1–336.
Valenzuela N., Lance V.A. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian Books; Washington, DC, USA: 2004. pp. 1–194.
Burger J., Zappalorti R.T. Effects of incubation temperature on sex ratios in pine snakes: Differential vulnerability of males and females. Am. Natur. 1988;132:492–505. doi: 10.1086/284867. DOI
Dunlap K.D., Lang J.W. Offspring sex ratio varies with maternal size in the common garter snake, Thamnophis sirtalis. Copeia. 1990;1990:568–570. doi: 10.2307/1446363. DOI
Reichling S.B., Gutzke W.H. Phenotypic consequences of incubation environment in the African elapid genus Aspidelaps. Zoo Biol. 1996;15:301–308. doi: 10.1002/(SICI)1098-2361(1996)15:3<301::AID-ZOO8>3.0.CO;2-F. DOI
Sex Chromosome Turnovers and Stability in Snakes
Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis
Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards