Purification of Endogenous Tagged TRAMP4/5 and Exosome Complexes from Yeast and In Vitro Polyadenylation-Exosome Activation Assays
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Air1, Air2, Degradation assay, Mtr4, Noncanonical poly(A) polymerase, Noncoding RNAs, Polyadenylation assay, RNA exosome, RNA quality control, Rrp6, TAP purification, TRAMP4, Trf4,
- MeSH
- buněčné jádro metabolismus MeSH
- exozom metabolismus MeSH
- exozómy metabolismus MeSH
- polyadenylace fyziologie MeSH
- RNA metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- serinové endopeptidasy metabolismus MeSH
- stabilita RNA fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- exozom MeSH
- RNA MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- serinové endopeptidasy MeSH
- tunicate retinoic acid-inducible modular protease MeSH Prohlížeč
The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.
Zobrazit více v PubMed
Mitchell P et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91(4):457–466 PubMed DOI
Callahan KP, Butler JS (2010) TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 285(6):3540–3547 PubMed DOI
Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21(2):239–248 PubMed DOI
Vanacova S et al (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3(6):e189 PubMed DOI
LaCava J et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724 PubMed DOI
Wyers F et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737 PubMed DOI
Thiebaut M et al (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23(6):853–864 PubMed DOI
Lubas M et al (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43(4):624–637 PubMed DOI
Hrossova D et al (2015) RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res 43(8):4236–4248 PubMed DOI PMC
Arigo JT et al (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23(6):841–851 PubMed DOI
Carroll KL et al (2004) Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24(14):6241–6252 PubMed DOI PMC
Steinmetz EJ et al (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413(6853):327–331 PubMed DOI
Egecioglu DE, Henras AK, Chanfreau GF (2006) Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 12(1):26–32 PubMed DOI PMC
Halbach F, Rode M, Conti E (2012) The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA 18(1):124–134 PubMed DOI PMC
Weir JR et al (2010) Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci U S A 107(27):12139–12144 PubMed DOI PMC
Holub P et al (2012) Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation. Nucleic Acids Res 40(12):5679–5693 PubMed DOI PMC
Weick EM et al (2018) Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 173(7):1663–1677. e21 PubMed DOI PMC
Fan J et al (2017) Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J 36(19):2870–2886 PubMed DOI PMC
Vanacova S, Stefl R (2007) The exosome and RNA quality control in the nucleus. EMBO Rep 8(7):651–657 PubMed DOI PMC
Haracska L et al (2005) Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity. Mol Cell Biol 25(22):10183–10189 PubMed DOI PMC
Hamill S, Wolin SL, Reinisch KM (2010) Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci U S A 107(34):15045–15050 PubMed DOI PMC
Fasken MB et al (2011) Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 286(43):37429–37445 PubMed DOI PMC
Kadaba S et al (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240 PubMed DOI PMC
Kadaba S, Wang X, Anderson JT (2006) Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12(3):508–521 PubMed DOI PMC
Kapust RB et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14(12):993–1000 PubMed DOI
Lucast LJ, Batey RT, Doudna JA (2001) Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques 30(3):544–546. 548, 550 passim PubMed DOI