Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress

. 2019 Dec 03 ; 7 (12) : . [epub] 20191203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31816877

Grantová podpora
GA16-18476S Grantová Agentura České Republiky

Odkazy

PubMed 31816877
PubMed Central PMC6955949
DOI 10.3390/microorganisms7120640
PII: microorganisms7120640
Knihovny.cz E-zdroje

Paracoccus denitrificans is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD+ ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron-sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the cbb3-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.

Zobrazit více v PubMed

Campian J.L., Qian M.Q., Gao X.H., Eaton J.W. Oxygen tolerance and coupling of mitochondrial electron transport. J. Biol. Chem. 2004;279:46580–46587. doi: 10.1074/jbc.M406685200. PubMed DOI

Imlay J.A., Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 1991;266:6957–6965. PubMed

González-Flecha B., Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J. Biol. Chem. 1995;270:13681–13687. doi: 10.1074/jbc.270.23.13681. PubMed DOI

Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J.A. The oxidative inactivation of mitochondrial electron-transport chain components and ATPase. J. Biol. Chem. 1990;265:16330–16336. PubMed

Palmeira C.M., Moreno A.J., Madeira V.M.C. Mitochondrial bioenergetics is affected by the herbicide paraquat. Bba-Bioenerg. 1995;1229:187–192. doi: 10.1016/0005-2728(94)00202-G. PubMed DOI

Bosshard F., Bucheli M., Meur Y., Egli T. The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli. Microbiol. Sgm. 2010;156:2006–2015. doi: 10.1099/mic.0.038471-0. PubMed DOI

Diaz-Vasquez W.A., Abarca-Lagunas M.J., Cornejo F.A., Pinto C.A., Arenas F.A., Vasquez C.C. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch. Biochem. Biophys. 2015;566:67–75. doi: 10.1016/j.abb.2014.10.011. PubMed DOI

John P., Whatley F.R. Paracoccus denitrificans and evolutionary origin of mitochondrion. Nature. 1975;254:495–498. doi: 10.1038/254495a0. PubMed DOI

Xu X.M., Matsunoyagi A., Yagi T. DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry. 1993;32:968–981. doi: 10.1021/bi00054a030. PubMed DOI

Kurowski B., Ludwig B. The genes of the Paracoccus denitrificans bc1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J. Biol. Chem. 1987;262:13805–13811. PubMed

Raitio M., Jalli T., Saraste M. Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. Embo J. 1987;6:2825–2833. doi: 10.1002/j.1460-2075.1987.tb02579.x. PubMed DOI PMC

Rich P.R., Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010;47:1–23. PubMed

Otten M.F., Stork D.R., Reijnders W.N.M., Westerhoff H.V., van Spanning R.J.M. Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur. J. Biochem. 2001;268:2486–2497. doi: 10.1046/j.1432-1327.2001.02131.x. PubMed DOI

De Gier J.W.L., Lubben M., Reijnders W.N.M., Tipker C.A., Slotboom D.J., van Spanning R.J.M., Stouthamer A.H., van der Oost J. The terminal oxidases of Paracoccus denitrificans. Mol. Microbiol. 1994;13:183–196. doi: 10.1111/j.1365-2958.1994.tb00414.x. PubMed DOI

Zickermann I., Tautu O.S., Link T.A., Korn M., Ludwig B., Richter O.M.H. Expression studies on the ba3 quinol oxidase from Paracoccus denitrificans. A bb3 variant is enzymatically inactive. Eur. J. Biochem. 1997;246:618–624. doi: 10.1111/j.1432-1033.1997.00618.x. PubMed DOI

Otten M.F., Reijnders W.N.M., Bedaux J.J.M., Westerhoff H.V., Krab K., van Spanning R.J.M. The reduction state of the Q-pool regulates the electron flux through the branched respiratory network of Paracoccus denitrificans. Eur. J. Biochem. 1999;261:767–774. doi: 10.1046/j.1432-1327.1999.00334.x. PubMed DOI

Hutchings M.I., Crack J.C., Shearer N., Thompson B.J., Thomson A.J., Spiro S. Transcription factor FnrP from Paracoccus denitrificans contains an iron-sulfur cluster and is activated by anoxia: Identification of essential cysteine residues. J. Bacteriol. 2002;184:503–508. doi: 10.1128/JB.184.2.503-508.2002. PubMed DOI PMC

Crack J.C., Hutchings M.I., Thomson A.J., Le Brun N.E. Biochemical properties of Paracoccus denitrificans FnrP: Reactions with molecular oxygen and nitric oxide. J. Biol. Inorg. Chem. 2016;21:71–82. doi: 10.1007/s00775-015-1326-7. PubMed DOI PMC

Van Spanning R.J.M., de Boer A.P.N., Reijnders W.N.M., Westerhoff H.V., Stouthamer A.H., van der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol. 1997;23:893–907. doi: 10.1046/j.1365-2958.1997.2801638.x. PubMed DOI

Ferguson S.J. Paracoccus denitrificans oxidative phosphorylation: Retentions, gains, losses, and lessons en route to mitochondria. Iubmb Life. 2018;70:1214–1221. doi: 10.1002/iub.1962. PubMed DOI

de Vries G.E., Harms N., Hoogendijk J., Stouthamer A.H. Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch. Microbiol. 1989;152:52–57. doi: 10.1007/BF00447011. DOI

Burnell J.N., John P., Whatley F.R. Reversibility of active sulfate transport in membrane vesicles of Paracoccus denitrificans. Biochem. J. 1975;150:527–536. doi: 10.1042/bj1500527. PubMed DOI PMC

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J. Leukoc. Biol. 1990;47:440–448. doi: 10.1002/jlb.47.5.440. PubMed DOI

Kulzer R., Pils T., Kappl R., Huttermann J., Knappe J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 1998;273:4897–4903. doi: 10.1074/jbc.273.9.4897. PubMed DOI

Bernofsky C., Swan M. Improved cycling assay for nicotinamide adenine dinucleotide. Anal. Biochem. 1973;53:452–458. doi: 10.1016/0003-2697(73)90094-8. PubMed DOI

Zhou Y., Wang L., Yang F., Lin X., Zhang S., Zhao Z.K. Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant. Appl. Env. Microbiol. 2011;77:6133–6140. doi: 10.1128/AEM.00630-11. PubMed DOI PMC

Kucera I., Lampardova L., Dadak V. Control of respiration rate in non-growing cells of Paracoccus denitrificans. Biochem. J. 1987;246:779–782. doi: 10.1042/bj2460779. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Sedlacek V., Ptackova N., Rejmontova P., Kucera I. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant. Febs J. 2015;282:283–296. doi: 10.1111/febs.13126. PubMed DOI

Bus J.S., Gibson J.E. Paraquat: Model for oxidant-initiated toxicity. Env. Health Persp. 1984;55:37–46. doi: 10.1289/ehp.845537. PubMed DOI PMC

Flint D.H., Tuminello J.F., Emptage M.H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 1993;268:22369–22376. PubMed

Flint D.H., Allen R.M. Iron-sulfur proteins with nonredox functions. Chem. Rev. 1996;96:2315–2334. doi: 10.1021/cr950041r. PubMed DOI

Imlay J.A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006;59:1073–1082. doi: 10.1111/j.1365-2958.2006.05028.x. PubMed DOI

Djaman O., Outten F.W., Imlay J.A. Repair of oxidized iron-sulfur clusters in Escherichia coli. J. Biol. Chem. 2004;279:44590–44599. doi: 10.1074/jbc.M406487200. PubMed DOI

Dunstan R.H., Whatley F.R., Greenaway W. Growth of Paracoccus denitrificans on [2,3-13C]succinate and [1,4-13C]succinate. I. The flux of carbon in energy metabolism and the operation of the TCA cycle. Proc. R. Soc. Lond. BBiol. Sci. 1987;231:339–347. PubMed

Mailloux R.J., Lemire J., Appanna V.D. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Antonie Van Leeuwenhoek. 2011;99:433–442. doi: 10.1007/s10482-010-9538-x. PubMed DOI

Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-associated changes in oxidative stress and NAD(+) metabolism in human tissue. PLos ONE. 2012;7:e42357. doi: 10.1371/journal.pone.0042357. PubMed DOI PMC

Sedlacek V., Kucera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol. Microbiol. 2019;112:166–183. doi: 10.1111/mmi.14260. PubMed DOI

Crack J.C., Green J., Cheesman M.R., Le Brun N.E., Thomson A.J. Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc. Natl. Acad. Sci. USA. 2007;104:2092–2097. doi: 10.1073/pnas.0609514104. PubMed DOI PMC

Sutton V.R., Stubna A., Patschkowski T., Munck E., Beinert H., Kiley P.J. Superoxide destroys the [2Fe-2S](2+) cluster of FNR from Escherichia coli. Biochemistry. 2004;43:791–798. doi: 10.1021/bi0357053. PubMed DOI

Pernikarova V., Sedlacek V., Potesil D., Prochazkova I., Zdrahal Z., Bouchal P., Kucera I. Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J. Proteom. 2015;125:68–75. doi: 10.1016/j.jprot.2015.05.002. PubMed DOI

Preisig O., Zufferey R., ThonyMeyer L., Appleby C.A., Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J. Bacteriol. 1996;178:1532–1538. doi: 10.1128/jb.178.6.1532-1538.1996. PubMed DOI PMC

Bouchal P., Struharova I., Budinska E., Sedo O., Vyhlidalova T., Zdrahal Z., van Spanning R., Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Bba-Proteins Proteom. 2010;1804:1350–1358. doi: 10.1016/j.bbapap.2010.01.016. PubMed DOI

Giannopoulos G., Sullivan M.J., Hartop K.R., Rowley G., Gates A.J., Watmough N.J., Richardson D.J. Tuning the modular Paracoccus denitrificans respirome to adapt from aerobic respiration to anaerobic denitrification. Env. Microbiol. 2017;19:4953–4964. doi: 10.1111/1462-2920.13974. PubMed DOI

Imlay J.A. Transcription factors that defend bacteria against reactive oxygen species. Annu. Rev. Microbiol. 2015;69:93–108. doi: 10.1146/annurev-micro-091014-104322. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace