Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA16-18476S
Grantová Agentura České Republiky
PubMed
31816877
PubMed Central
PMC6955949
DOI
10.3390/microorganisms7120640
PII: microorganisms7120640
Knihovny.cz E-zdroje
- Klíčová slova
- FnrP transcription factor, NADH dehydrogenase, iron–sulfur cluster, succinate dehydrogenase, superoxide, terminal oxidase,
- Publikační typ
- časopisecké články MeSH
Paracoccus denitrificans is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD+ ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron-sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the cbb3-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.
Zobrazit více v PubMed
Campian J.L., Qian M.Q., Gao X.H., Eaton J.W. Oxygen tolerance and coupling of mitochondrial electron transport. J. Biol. Chem. 2004;279:46580–46587. doi: 10.1074/jbc.M406685200. PubMed DOI
Imlay J.A., Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 1991;266:6957–6965. PubMed
González-Flecha B., Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J. Biol. Chem. 1995;270:13681–13687. doi: 10.1074/jbc.270.23.13681. PubMed DOI
Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J.A. The oxidative inactivation of mitochondrial electron-transport chain components and ATPase. J. Biol. Chem. 1990;265:16330–16336. PubMed
Palmeira C.M., Moreno A.J., Madeira V.M.C. Mitochondrial bioenergetics is affected by the herbicide paraquat. Bba-Bioenerg. 1995;1229:187–192. doi: 10.1016/0005-2728(94)00202-G. PubMed DOI
Bosshard F., Bucheli M., Meur Y., Egli T. The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli. Microbiol. Sgm. 2010;156:2006–2015. doi: 10.1099/mic.0.038471-0. PubMed DOI
Diaz-Vasquez W.A., Abarca-Lagunas M.J., Cornejo F.A., Pinto C.A., Arenas F.A., Vasquez C.C. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch. Biochem. Biophys. 2015;566:67–75. doi: 10.1016/j.abb.2014.10.011. PubMed DOI
John P., Whatley F.R. Paracoccus denitrificans and evolutionary origin of mitochondrion. Nature. 1975;254:495–498. doi: 10.1038/254495a0. PubMed DOI
Xu X.M., Matsunoyagi A., Yagi T. DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry. 1993;32:968–981. doi: 10.1021/bi00054a030. PubMed DOI
Kurowski B., Ludwig B. The genes of the Paracoccus denitrificans bc1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J. Biol. Chem. 1987;262:13805–13811. PubMed
Raitio M., Jalli T., Saraste M. Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. Embo J. 1987;6:2825–2833. doi: 10.1002/j.1460-2075.1987.tb02579.x. PubMed DOI PMC
Rich P.R., Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010;47:1–23. PubMed
Otten M.F., Stork D.R., Reijnders W.N.M., Westerhoff H.V., van Spanning R.J.M. Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur. J. Biochem. 2001;268:2486–2497. doi: 10.1046/j.1432-1327.2001.02131.x. PubMed DOI
De Gier J.W.L., Lubben M., Reijnders W.N.M., Tipker C.A., Slotboom D.J., van Spanning R.J.M., Stouthamer A.H., van der Oost J. The terminal oxidases of Paracoccus denitrificans. Mol. Microbiol. 1994;13:183–196. doi: 10.1111/j.1365-2958.1994.tb00414.x. PubMed DOI
Zickermann I., Tautu O.S., Link T.A., Korn M., Ludwig B., Richter O.M.H. Expression studies on the ba3 quinol oxidase from Paracoccus denitrificans. A bb3 variant is enzymatically inactive. Eur. J. Biochem. 1997;246:618–624. doi: 10.1111/j.1432-1033.1997.00618.x. PubMed DOI
Otten M.F., Reijnders W.N.M., Bedaux J.J.M., Westerhoff H.V., Krab K., van Spanning R.J.M. The reduction state of the Q-pool regulates the electron flux through the branched respiratory network of Paracoccus denitrificans. Eur. J. Biochem. 1999;261:767–774. doi: 10.1046/j.1432-1327.1999.00334.x. PubMed DOI
Hutchings M.I., Crack J.C., Shearer N., Thompson B.J., Thomson A.J., Spiro S. Transcription factor FnrP from Paracoccus denitrificans contains an iron-sulfur cluster and is activated by anoxia: Identification of essential cysteine residues. J. Bacteriol. 2002;184:503–508. doi: 10.1128/JB.184.2.503-508.2002. PubMed DOI PMC
Crack J.C., Hutchings M.I., Thomson A.J., Le Brun N.E. Biochemical properties of Paracoccus denitrificans FnrP: Reactions with molecular oxygen and nitric oxide. J. Biol. Inorg. Chem. 2016;21:71–82. doi: 10.1007/s00775-015-1326-7. PubMed DOI PMC
Van Spanning R.J.M., de Boer A.P.N., Reijnders W.N.M., Westerhoff H.V., Stouthamer A.H., van der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol. 1997;23:893–907. doi: 10.1046/j.1365-2958.1997.2801638.x. PubMed DOI
Ferguson S.J. Paracoccus denitrificans oxidative phosphorylation: Retentions, gains, losses, and lessons en route to mitochondria. Iubmb Life. 2018;70:1214–1221. doi: 10.1002/iub.1962. PubMed DOI
de Vries G.E., Harms N., Hoogendijk J., Stouthamer A.H. Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch. Microbiol. 1989;152:52–57. doi: 10.1007/BF00447011. DOI
Burnell J.N., John P., Whatley F.R. Reversibility of active sulfate transport in membrane vesicles of Paracoccus denitrificans. Biochem. J. 1975;150:527–536. doi: 10.1042/bj1500527. PubMed DOI PMC
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J. Leukoc. Biol. 1990;47:440–448. doi: 10.1002/jlb.47.5.440. PubMed DOI
Kulzer R., Pils T., Kappl R., Huttermann J., Knappe J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 1998;273:4897–4903. doi: 10.1074/jbc.273.9.4897. PubMed DOI
Bernofsky C., Swan M. Improved cycling assay for nicotinamide adenine dinucleotide. Anal. Biochem. 1973;53:452–458. doi: 10.1016/0003-2697(73)90094-8. PubMed DOI
Zhou Y., Wang L., Yang F., Lin X., Zhang S., Zhao Z.K. Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant. Appl. Env. Microbiol. 2011;77:6133–6140. doi: 10.1128/AEM.00630-11. PubMed DOI PMC
Kucera I., Lampardova L., Dadak V. Control of respiration rate in non-growing cells of Paracoccus denitrificans. Biochem. J. 1987;246:779–782. doi: 10.1042/bj2460779. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Sedlacek V., Ptackova N., Rejmontova P., Kucera I. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant. Febs J. 2015;282:283–296. doi: 10.1111/febs.13126. PubMed DOI
Bus J.S., Gibson J.E. Paraquat: Model for oxidant-initiated toxicity. Env. Health Persp. 1984;55:37–46. doi: 10.1289/ehp.845537. PubMed DOI PMC
Flint D.H., Tuminello J.F., Emptage M.H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 1993;268:22369–22376. PubMed
Flint D.H., Allen R.M. Iron-sulfur proteins with nonredox functions. Chem. Rev. 1996;96:2315–2334. doi: 10.1021/cr950041r. PubMed DOI
Imlay J.A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006;59:1073–1082. doi: 10.1111/j.1365-2958.2006.05028.x. PubMed DOI
Djaman O., Outten F.W., Imlay J.A. Repair of oxidized iron-sulfur clusters in Escherichia coli. J. Biol. Chem. 2004;279:44590–44599. doi: 10.1074/jbc.M406487200. PubMed DOI
Dunstan R.H., Whatley F.R., Greenaway W. Growth of Paracoccus denitrificans on [2,3-13C]succinate and [1,4-13C]succinate. I. The flux of carbon in energy metabolism and the operation of the TCA cycle. Proc. R. Soc. Lond. BBiol. Sci. 1987;231:339–347. PubMed
Mailloux R.J., Lemire J., Appanna V.D. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Antonie Van Leeuwenhoek. 2011;99:433–442. doi: 10.1007/s10482-010-9538-x. PubMed DOI
Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-associated changes in oxidative stress and NAD(+) metabolism in human tissue. PLos ONE. 2012;7:e42357. doi: 10.1371/journal.pone.0042357. PubMed DOI PMC
Sedlacek V., Kucera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol. Microbiol. 2019;112:166–183. doi: 10.1111/mmi.14260. PubMed DOI
Crack J.C., Green J., Cheesman M.R., Le Brun N.E., Thomson A.J. Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc. Natl. Acad. Sci. USA. 2007;104:2092–2097. doi: 10.1073/pnas.0609514104. PubMed DOI PMC
Sutton V.R., Stubna A., Patschkowski T., Munck E., Beinert H., Kiley P.J. Superoxide destroys the [2Fe-2S](2+) cluster of FNR from Escherichia coli. Biochemistry. 2004;43:791–798. doi: 10.1021/bi0357053. PubMed DOI
Pernikarova V., Sedlacek V., Potesil D., Prochazkova I., Zdrahal Z., Bouchal P., Kucera I. Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J. Proteom. 2015;125:68–75. doi: 10.1016/j.jprot.2015.05.002. PubMed DOI
Preisig O., Zufferey R., ThonyMeyer L., Appleby C.A., Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J. Bacteriol. 1996;178:1532–1538. doi: 10.1128/jb.178.6.1532-1538.1996. PubMed DOI PMC
Bouchal P., Struharova I., Budinska E., Sedo O., Vyhlidalova T., Zdrahal Z., van Spanning R., Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Bba-Proteins Proteom. 2010;1804:1350–1358. doi: 10.1016/j.bbapap.2010.01.016. PubMed DOI
Giannopoulos G., Sullivan M.J., Hartop K.R., Rowley G., Gates A.J., Watmough N.J., Richardson D.J. Tuning the modular Paracoccus denitrificans respirome to adapt from aerobic respiration to anaerobic denitrification. Env. Microbiol. 2017;19:4953–4964. doi: 10.1111/1462-2920.13974. PubMed DOI
Imlay J.A. Transcription factors that defend bacteria against reactive oxygen species. Annu. Rev. Microbiol. 2015;69:93–108. doi: 10.1146/annurev-micro-091014-104322. PubMed DOI PMC