Analysis of Small RNAs of Barley Genotypes Associated with Resistance to Barley Yellow Dwarf Virus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TF02000056
Technology Agency of the Czech Republic
PubMed
31906504
PubMed Central
PMC7020447
DOI
10.3390/plants9010060
PII: plants9010060
Knihovny.cz E-zdroje
- Klíčová slova
- BYDV, NGS, Ryd2, miRNA, sRNA, sequencing,
- Publikační typ
- časopisecké články MeSH
Barley yellow dwarf virus (BYDV) causes an often-devastating disease of cereals that is most effectively controlled by using plant genotypes that are resistant or tolerant to the virus. New barley lines Vir8:3 and Vir13:8, with pyramided resistance genes against different pathogens and resistance gene Ryd2 against BYDV, are currently being tested. Because microRNAs (miRNAs) are associated with antiviral plant defense, here we compared the miRNA profiles in these lines and in cultivar Wysor (carrying one resistance gene, Ryd2), with and without BYDV infection and after feeding by virus-free aphids, to determine whether the miRNA profile in the resistant variety bear similarities with the newly developed lines. The BYDV titer for each group was also determined and compared to the titer in sensitive cultivar Graciosa. Among 746 miRNAs identified in barley, 66 were known miRNAs, and 680 were novel. The expression of 73 miRNAs differed significantly after BYDV infection, including the strong, specific upregulation of novel miRNA10778 that was conserved across all the barley genotypes. This miRNA belongs to the H box and ACA box (H/ACA) snoR14 family of RNAs (Rf01280) and is associated with pseudourydilation. The expression of 48 miRNAs also differed depending on the barley genotype. The profile of miRNAs expressed in Vir8:3 and Vir13:8 in response to BYDV was similar and differed from that of Wysor. Insights into the expression patterns of miRNAs in response to BYDV in barley provided here will benefit further studies toward understanding the resistance mechanisms and developing novel strategies against virus infections.
Plant Virus and Vector Interactions Crop Research Institute Drnovská 507 16106 Prague Czech Republic
Zobrazit více v PubMed
Adams M.J., Lefkowitz E.J., King A.M.Q., Harrach B., Harrison R.L., Knowles N.J., Kropinski A.M., Krupovic M., Kuhn J.H., Mushegian A.R. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2016;161:2921–2949. doi: 10.1007/s00705-016-2977-6. PubMed DOI PMC
D’Arcy C.J., Burnett P.A. Barley Yellow Dwarf: 40 Years of Progress. APS Press; St Paul, MN, USA: 1995. 374p
Pike K.S. A review of barley yellow dwarf virus grain losses. In: Burnett P.A., editor. World Perspectives on Barley Yellow Dwarf Virus. International Maize and Wheat Improvement Center; Mexico City, Mexico: 1990. pp. 356–359.
Perry K.L., Kolb F.L., Sammons B., Lawson C., Cisar G., Ohm H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology. 2000;90:1043–1048. doi: 10.1094/PHYTO.2000.90.9.1043. PubMed DOI
Henry M., Posadas G., Segura J., Rajaram S. Evaluating resistance to BYDV-PAV, BYDV-MAV, and CYDV-RPV in Thinopyrum intermedium-derived wheat lines; Proceedings of the International Symposium; Texcoco, Mexico. 1–5 September 2002; pp. 64–66.
Jarošová J., Beoni E., Kundu J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Res. 2016;198:200–214. doi: 10.1016/j.fcr.2016.08.030. DOI
Kosová K., Chrpová J. Recent Advances in Breeding of Cereals for Resistance to Barley Yellow Dwarf Virus—A Review. Czech J. Genet. Plant Breed. 2008;44:1–10. doi: 10.17221/6/2008-CJGPB. DOI
Kamitani M., Nagano A.J., Honjo M.N., Kudoh H. RNA-Seq reveals virus–virus and virus–plant interactions in nature. FEMS Microbiol. Ecol. 2016;92:1–11. doi: 10.1093/femsec/fiw176. PubMed DOI PMC
Dunoyer P., Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr. Opin. Plant Biol. 2005;8:415–423. doi: 10.1016/j.pbi.2005.05.012. PubMed DOI
Xia Z., Zhao Z., Chen L., Li M., Zhou T., Deng C., Zhou Q., Fan Z. Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci. Rep. 2016;6:20520. doi: 10.1038/srep20520. PubMed DOI PMC
Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–363. doi: 10.1038/nature02874. PubMed DOI
Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Axtell M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 2013;64:137–159. doi: 10.1146/annurev-arplant-050312-120043. PubMed DOI
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–687. doi: 10.1016/j.cell.2009.01.046. PubMed DOI
Dugas D.V., Bartel B. MicroRNA regulation of gene expression in plants. Curr. Opin. Plant Biol. 2004;7:512–520. doi: 10.1016/j.pbi.2004.07.011. PubMed DOI
Kasschau K.D., Xie Z., Allen E., Llave C., Chapman E.J., Krizan K.A., Carrington J.C. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell. 2003;4:205–217. doi: 10.1016/S1534-5807(03)00025-X. PubMed DOI
Khraiwesh B., Zhu J.-K., Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2012;1819:137–148. doi: 10.1016/j.bbagrm.2011.05.001. PubMed DOI PMC
Yin Z., Murawska Z., Xie F., Pawełkowicz M., Michalak K., Zhang B., Lebecka R. microRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res. 2019;260:20–32. doi: 10.1016/j.virusres.2018.11.002. PubMed DOI
Li F., Pignatta D., Bendix C., Brunkard J.O., Cohn M.M., Tung J., Sun H., Kumar P., Baker B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA. 2012;109:1790–1795. doi: 10.1073/pnas.1118282109. PubMed DOI PMC
Du P., Wu J., Zhang J., Zhao S., Zheng H., Gao G., Wei L., Li Y. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog. 2011;7:e1002176. doi: 10.1371/journal.ppat.1002176. PubMed DOI PMC
Tousi N., Eini O., Ahmadvand R., Carra A., Miozzi L., Noris E., Accotto G.P. In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australas. Plant Pathol. 2017;46:379–386. doi: 10.1007/s13313-017-0500-5. DOI
The Czech National Programme on Conservation and Utilization of Microbial Genetic Resources Important for Agriculture. [(accessed on 20 October 2019)]; Available online: https://www.vurv.cz/microbes/Phytopathogenic%20Viruses.html.
Jarosová J., Kundu J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146. doi: 10.1186/1471-2229-10-146. PubMed DOI PMC
Varkonyi-Gasic E., Wu R., Wood M., Walton E.F., Hellens R.P. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3:12. doi: 10.1186/1746-4811-3-12. PubMed DOI PMC
Turner M., Adhikari S., Subramanian S. Optimizing stem-loop qPCR assays through multiplexed cDNA synthesis of U6 and miRNAs. Plant Signal. Behav. 2013;8:e24918. doi: 10.4161/psb.24918. PubMed DOI PMC
Ferdous J., Li Y., Reid N., Langridge P., Shi B.-J., Tricker P.J. Identification of reference genes for quantitative expression analysis of MicroRNAs and mRNAs in barley under various stress conditions. PLoS ONE. 2015;10:e0118503. doi: 10.1371/journal.pone.0118503. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32:D109–D111. doi: 10.1093/nar/gkh023. PubMed DOI PMC
An J., Lai J., Sajjanhar A., Lehman M.L., Nelson C.C. miRPlant: An integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinform. 2014;15:275. doi: 10.1186/1471-2105-15-275. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Singh K., Zouhar M., Mazakova J., Ryšánek P. Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: A Causal Agent of Blackleg Disease in Oilseed Rape (Brassica napus) Omics A J. Integr. Biol. 2014;18:645–657. doi: 10.1089/omi.2014.0081. PubMed DOI PMC
Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. ArXiv. 20121207.3907
Wang W., Galili G. Tuning the Orchestra: miRNAs in Plant Immunity. Trends Plant Sci. 2019;24:189–191. doi: 10.1016/j.tplants.2019.01.009. PubMed DOI
Curaba J., Talbot M., Li Z., Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol. 2013;13:6. doi: 10.1186/1471-2229-13-6. PubMed DOI PMC
Curaba J., Spriggs A., Taylor J., Li Z., Helliwell C. miRNA regulation in the early development of barley seed. BMC Plant Biol. 2012;12:120. doi: 10.1186/1471-2229-12-120. PubMed DOI PMC
Fard E.M., Bakhshi B., Keshavarznia R., Nikpay N., Shahbazi M., Salekdeh G.H. Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol. Biochem. 2017;118:121–129. doi: 10.1016/j.plaphy.2017.06.007. PubMed DOI
Ferdous J., Sanchez-Ferrero J.C., Langridge P., Milne L., Chowdhury J., Brien C., Tricker P.J. Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ. 2017;40:11–24. doi: 10.1111/pce.12764. PubMed DOI
Ferdous J., Whitford R., Nguyen M., Brien C., Langridge P., Tricker P.J. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct. Integr. Genom. 2017;17:279–292. doi: 10.1007/s10142-016-0526-8. PubMed DOI
Hackenberg M., Gustafson P., Langridge P., Shi B. Differential expression of micro RNA s and other small RNA s in barley between water and drought conditions. Plant Biotechnol. J. 2015;13:2–13. doi: 10.1111/pbi.12220. PubMed DOI PMC
Kantar M., Unver T., Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct. Integr. Genom. 2010;10:493–507. doi: 10.1007/s10142-010-0181-4. PubMed DOI
Kruszka K., Pacak A., Swida-Barteczka A., Nuc P., Alaba S., Wroblewska Z., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J. Exp. Bot. 2014;65:6123–6135. doi: 10.1093/jxb/eru353. PubMed DOI PMC
Hackenberg M., Shi B.-J., Gustafson P., Langridge P. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 2013;13:214. doi: 10.1186/1471-2229-13-214. PubMed DOI PMC
Hackenberg M., Huang P.-J., Huang C.-Y., Shi B.-J., Gustafson P., Langridge P. A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and-sufficient conditions. DNA Res. 2012;20:109–125. doi: 10.1093/dnares/dss037. PubMed DOI PMC
Ozhuner E., Eldem V., Ipek A., Okay S., Sakcali S., Zhang B., Boke H., Unver T. Boron stress responsive microRNAs and their targets in barley. PLoS ONE. 2013;8:e59543. doi: 10.1371/journal.pone.0059543. PubMed DOI PMC
Mutum R.D., Balyan S.C., Kansal S., Agarwal P., Kumar S., Kumar M., Raghuvanshi S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J. 2013;280:1717–1730. doi: 10.1111/febs.12186. PubMed DOI
Singh K., Talla A., Qiu W. Small RNA profiling of virus-infected grapevines: Evidences for virus infection-associated and variety-specific miRNAs. Funct. Integr. Genom. 2012;12:659–669. doi: 10.1007/s10142-012-0292-1. PubMed DOI
Mitter N., Koundal V., Williams S., Pappu H. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants. PLoS ONE. 2013;8:e76276. doi: 10.1371/journal.pone.0076276. PubMed DOI PMC
Silva T.F., Romanel E.A.C., Andrade R.R.S., Farinelli L., Østerås M., Deluen C., Corrêa R.L., Schrago C.E.G., Vaslin M.F.S. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mol. Biol. 2011;12:40. doi: 10.1186/1471-2199-12-40. PubMed DOI PMC
Li J., Andika I.B., Shen J., Lv Y., Ji Y., Sun L., Chen J. Characterization of rice black-streaked dwarf virus-and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus. PLoS ONE. 2013;8:e66007. doi: 10.1371/journal.pone.0066007. PubMed DOI PMC
Donaire L., Barajas D., Martínez-García B., Martínez-Priego L., Pagán I., Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J. Virol. 2008;82:5167–5177. doi: 10.1128/JVI.00272-08. PubMed DOI PMC
Qi X., Bao F.S., Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE. 2009;4:e4971. doi: 10.1371/annotation/8d1a816e-b366-4833-b558-724ec28d1b87. PubMed DOI PMC
Ogwok E., Ilyas M., Alicai T., Rey M.E.C., Taylor N.J. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses. Virus Res. 2016;215:1–11. doi: 10.1016/j.virusres.2016.01.015. PubMed DOI PMC
Sahu P.P., Rai N.K., Puranik S., Roy A., Khan M., Prasad M. Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with Tomato Leaf Curl New Delhi Virus. Mol. Biotechnol. 2012;52:140–150. doi: 10.1007/s12033-011-9481-8. PubMed DOI
Li A., Li G., Zhao Y., Meng Z., Zhao M., Li C., Zhang Y., Li P., Ma C.-L., Xia H. Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Sci. Rep. 2018;8:13502. doi: 10.1038/s41598-018-31919-z. PubMed DOI PMC
Hu Q., Hollunder J., Niehl A., Kørner C.J., Gereige D., Windels D., Arnold A., Kuiper M., Vazquez F., Pooggin M. Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS ONE. 2011;6:e19549. doi: 10.1371/journal.pone.0019549. PubMed DOI PMC
Blevins T., Rajeswaran R., Shivaprasad P.V., Beknazariants D., Si-Ammour A., Park H.-S., Vazquez F., Robertson D., Meins F., Jr., Hohn T. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34:6233–6246. doi: 10.1093/nar/gkl886. PubMed DOI PMC
Csorba T., Bovi A., Dalmay T., Burgyán J. The p122 subunit of Tobacco Mosaic Virus replicase is a potent silencing suppressor and compromises both small interfering RNA-and microRNA-mediated pathways. J. Virol. 2007;81:11768–11780. doi: 10.1128/JVI.01230-07. PubMed DOI PMC
Vogler H., Akbergenov R., Shivaprasad P.V., Dang V., Fasler M., Kwon M.-O., Zhanybekova S., Hohn T., Heinlein M. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 2007;81:10379–10388. doi: 10.1128/JVI.00727-07. PubMed DOI PMC
Penzo M., Guerrieri A., Zacchini F., Treré D., Montanaro L. RNA pseudouridylation in physiology and medicine: For better and for worse. Genes. 2017;8:301. doi: 10.3390/genes8110301. PubMed DOI PMC
Zhao Y., Karijolich J., Glaunsinger B., Zhou Q. Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency. EMBO Rep. 2016;17:1441–1451. doi: 10.15252/embr.201642682. PubMed DOI PMC
Bunik V.I., Fernie A.R. Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: A cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem. J. 2009;422:405–421. doi: 10.1042/BJ20090722. PubMed DOI
Graf A., Trofimova L., Loshinskaja A., Mkrtchyan G., Strokina A., Lovat M., Tylicky A., Strumilo S., Bettendorff L., Bunik V.I. Up-regulation of 2-oxoglutarate dehydrogenase as a stress response. Int. J. Biochem. Cell Biol. 2013;45:175–189. doi: 10.1016/j.biocel.2012.07.002. PubMed DOI
Araujo W.L., Nunes-Nesi A., Trenkamp S., Bunik V.I., Fernie A.R. Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol. 2008;148:1782–1796. doi: 10.1104/pp.108.126219. PubMed DOI PMC
Jia M., Li Y., Lei L., Di D., Miao H., Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. Mol. Plant Pathol. 2012;13:251–262. doi: 10.1111/j.1364-3703.2011.00743.x. PubMed DOI PMC
Sattar S., Song Y., Anstead J.A., Sunkar R., Thompson G.A. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. Mol. Plant Microbe Interact. 2012;25:839–848. doi: 10.1094/MPMI-09-11-0252. PubMed DOI
Xia X., Shao Y., Jiang J., Du X., Sheng L., Chen F., Fang W., Guan Z., Chen S. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium) PLoS ONE. 2015;10:e0143720. doi: 10.1371/journal.pone.0143720. PubMed DOI PMC