Analysis of Small RNAs of Barley Genotypes Associated with Resistance to Barley Yellow Dwarf Virus

. 2020 Jan 02 ; 9 (1) : . [epub] 20200102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31906504

Grantová podpora
TF02000056 Technology Agency of the Czech Republic

Barley yellow dwarf virus (BYDV) causes an often-devastating disease of cereals that is most effectively controlled by using plant genotypes that are resistant or tolerant to the virus. New barley lines Vir8:3 and Vir13:8, with pyramided resistance genes against different pathogens and resistance gene Ryd2 against BYDV, are currently being tested. Because microRNAs (miRNAs) are associated with antiviral plant defense, here we compared the miRNA profiles in these lines and in cultivar Wysor (carrying one resistance gene, Ryd2), with and without BYDV infection and after feeding by virus-free aphids, to determine whether the miRNA profile in the resistant variety bear similarities with the newly developed lines. The BYDV titer for each group was also determined and compared to the titer in sensitive cultivar Graciosa. Among 746 miRNAs identified in barley, 66 were known miRNAs, and 680 were novel. The expression of 73 miRNAs differed significantly after BYDV infection, including the strong, specific upregulation of novel miRNA10778 that was conserved across all the barley genotypes. This miRNA belongs to the H box and ACA box (H/ACA) snoR14 family of RNAs (Rf01280) and is associated with pseudourydilation. The expression of 48 miRNAs also differed depending on the barley genotype. The profile of miRNAs expressed in Vir8:3 and Vir13:8 in response to BYDV was similar and differed from that of Wysor. Insights into the expression patterns of miRNAs in response to BYDV in barley provided here will benefit further studies toward understanding the resistance mechanisms and developing novel strategies against virus infections.

Zobrazit více v PubMed

Adams M.J., Lefkowitz E.J., King A.M.Q., Harrach B., Harrison R.L., Knowles N.J., Kropinski A.M., Krupovic M., Kuhn J.H., Mushegian A.R. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2016;161:2921–2949. doi: 10.1007/s00705-016-2977-6. PubMed DOI PMC

D’Arcy C.J., Burnett P.A. Barley Yellow Dwarf: 40 Years of Progress. APS Press; St Paul, MN, USA: 1995. 374p

Pike K.S. A review of barley yellow dwarf virus grain losses. In: Burnett P.A., editor. World Perspectives on Barley Yellow Dwarf Virus. International Maize and Wheat Improvement Center; Mexico City, Mexico: 1990. pp. 356–359.

Perry K.L., Kolb F.L., Sammons B., Lawson C., Cisar G., Ohm H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology. 2000;90:1043–1048. doi: 10.1094/PHYTO.2000.90.9.1043. PubMed DOI

Henry M., Posadas G., Segura J., Rajaram S. Evaluating resistance to BYDV-PAV, BYDV-MAV, and CYDV-RPV in Thinopyrum intermedium-derived wheat lines; Proceedings of the International Symposium; Texcoco, Mexico. 1–5 September 2002; pp. 64–66.

Jarošová J., Beoni E., Kundu J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Res. 2016;198:200–214. doi: 10.1016/j.fcr.2016.08.030. DOI

Kosová K., Chrpová J. Recent Advances in Breeding of Cereals for Resistance to Barley Yellow Dwarf Virus—A Review. Czech J. Genet. Plant Breed. 2008;44:1–10. doi: 10.17221/6/2008-CJGPB. DOI

Kamitani M., Nagano A.J., Honjo M.N., Kudoh H. RNA-Seq reveals virus–virus and virus–plant interactions in nature. FEMS Microbiol. Ecol. 2016;92:1–11. doi: 10.1093/femsec/fiw176. PubMed DOI PMC

Dunoyer P., Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr. Opin. Plant Biol. 2005;8:415–423. doi: 10.1016/j.pbi.2005.05.012. PubMed DOI

Xia Z., Zhao Z., Chen L., Li M., Zhou T., Deng C., Zhou Q., Fan Z. Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci. Rep. 2016;6:20520. doi: 10.1038/srep20520. PubMed DOI PMC

Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–363. doi: 10.1038/nature02874. PubMed DOI

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Axtell M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 2013;64:137–159. doi: 10.1146/annurev-arplant-050312-120043. PubMed DOI

Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–687. doi: 10.1016/j.cell.2009.01.046. PubMed DOI

Dugas D.V., Bartel B. MicroRNA regulation of gene expression in plants. Curr. Opin. Plant Biol. 2004;7:512–520. doi: 10.1016/j.pbi.2004.07.011. PubMed DOI

Kasschau K.D., Xie Z., Allen E., Llave C., Chapman E.J., Krizan K.A., Carrington J.C. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell. 2003;4:205–217. doi: 10.1016/S1534-5807(03)00025-X. PubMed DOI

Khraiwesh B., Zhu J.-K., Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2012;1819:137–148. doi: 10.1016/j.bbagrm.2011.05.001. PubMed DOI PMC

Yin Z., Murawska Z., Xie F., Pawełkowicz M., Michalak K., Zhang B., Lebecka R. microRNA response in potato virus Y infected tobacco shows strain-specificity depending on host and symptom severity. Virus Res. 2019;260:20–32. doi: 10.1016/j.virusres.2018.11.002. PubMed DOI

Li F., Pignatta D., Bendix C., Brunkard J.O., Cohn M.M., Tung J., Sun H., Kumar P., Baker B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA. 2012;109:1790–1795. doi: 10.1073/pnas.1118282109. PubMed DOI PMC

Du P., Wu J., Zhang J., Zhao S., Zheng H., Gao G., Wei L., Li Y. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog. 2011;7:e1002176. doi: 10.1371/journal.ppat.1002176. PubMed DOI PMC

Tousi N., Eini O., Ahmadvand R., Carra A., Miozzi L., Noris E., Accotto G.P. In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australas. Plant Pathol. 2017;46:379–386. doi: 10.1007/s13313-017-0500-5. DOI

The Czech National Programme on Conservation and Utilization of Microbial Genetic Resources Important for Agriculture. [(accessed on 20 October 2019)]; Available online: https://www.vurv.cz/microbes/Phytopathogenic%20Viruses.html.

Jarosová J., Kundu J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146. doi: 10.1186/1471-2229-10-146. PubMed DOI PMC

Varkonyi-Gasic E., Wu R., Wood M., Walton E.F., Hellens R.P. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3:12. doi: 10.1186/1746-4811-3-12. PubMed DOI PMC

Turner M., Adhikari S., Subramanian S. Optimizing stem-loop qPCR assays through multiplexed cDNA synthesis of U6 and miRNAs. Plant Signal. Behav. 2013;8:e24918. doi: 10.4161/psb.24918. PubMed DOI PMC

Ferdous J., Li Y., Reid N., Langridge P., Shi B.-J., Tricker P.J. Identification of reference genes for quantitative expression analysis of MicroRNAs and mRNAs in barley under various stress conditions. PLoS ONE. 2015;10:e0118503. doi: 10.1371/journal.pone.0118503. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32:D109–D111. doi: 10.1093/nar/gkh023. PubMed DOI PMC

An J., Lai J., Sajjanhar A., Lehman M.L., Nelson C.C. miRPlant: An integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinform. 2014;15:275. doi: 10.1186/1471-2105-15-275. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Singh K., Zouhar M., Mazakova J., Ryšánek P. Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: A Causal Agent of Blackleg Disease in Oilseed Rape (Brassica napus) Omics A J. Integr. Biol. 2014;18:645–657. doi: 10.1089/omi.2014.0081. PubMed DOI PMC

Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. ArXiv. 20121207.3907

Wang W., Galili G. Tuning the Orchestra: miRNAs in Plant Immunity. Trends Plant Sci. 2019;24:189–191. doi: 10.1016/j.tplants.2019.01.009. PubMed DOI

Curaba J., Talbot M., Li Z., Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol. 2013;13:6. doi: 10.1186/1471-2229-13-6. PubMed DOI PMC

Curaba J., Spriggs A., Taylor J., Li Z., Helliwell C. miRNA regulation in the early development of barley seed. BMC Plant Biol. 2012;12:120. doi: 10.1186/1471-2229-12-120. PubMed DOI PMC

Fard E.M., Bakhshi B., Keshavarznia R., Nikpay N., Shahbazi M., Salekdeh G.H. Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol. Biochem. 2017;118:121–129. doi: 10.1016/j.plaphy.2017.06.007. PubMed DOI

Ferdous J., Sanchez-Ferrero J.C., Langridge P., Milne L., Chowdhury J., Brien C., Tricker P.J. Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ. 2017;40:11–24. doi: 10.1111/pce.12764. PubMed DOI

Ferdous J., Whitford R., Nguyen M., Brien C., Langridge P., Tricker P.J. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct. Integr. Genom. 2017;17:279–292. doi: 10.1007/s10142-016-0526-8. PubMed DOI

Hackenberg M., Gustafson P., Langridge P., Shi B. Differential expression of micro RNA s and other small RNA s in barley between water and drought conditions. Plant Biotechnol. J. 2015;13:2–13. doi: 10.1111/pbi.12220. PubMed DOI PMC

Kantar M., Unver T., Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct. Integr. Genom. 2010;10:493–507. doi: 10.1007/s10142-010-0181-4. PubMed DOI

Kruszka K., Pacak A., Swida-Barteczka A., Nuc P., Alaba S., Wroblewska Z., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J. Exp. Bot. 2014;65:6123–6135. doi: 10.1093/jxb/eru353. PubMed DOI PMC

Hackenberg M., Shi B.-J., Gustafson P., Langridge P. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 2013;13:214. doi: 10.1186/1471-2229-13-214. PubMed DOI PMC

Hackenberg M., Huang P.-J., Huang C.-Y., Shi B.-J., Gustafson P., Langridge P. A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and-sufficient conditions. DNA Res. 2012;20:109–125. doi: 10.1093/dnares/dss037. PubMed DOI PMC

Ozhuner E., Eldem V., Ipek A., Okay S., Sakcali S., Zhang B., Boke H., Unver T. Boron stress responsive microRNAs and their targets in barley. PLoS ONE. 2013;8:e59543. doi: 10.1371/journal.pone.0059543. PubMed DOI PMC

Mutum R.D., Balyan S.C., Kansal S., Agarwal P., Kumar S., Kumar M., Raghuvanshi S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J. 2013;280:1717–1730. doi: 10.1111/febs.12186. PubMed DOI

Singh K., Talla A., Qiu W. Small RNA profiling of virus-infected grapevines: Evidences for virus infection-associated and variety-specific miRNAs. Funct. Integr. Genom. 2012;12:659–669. doi: 10.1007/s10142-012-0292-1. PubMed DOI

Mitter N., Koundal V., Williams S., Pappu H. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants. PLoS ONE. 2013;8:e76276. doi: 10.1371/journal.pone.0076276. PubMed DOI PMC

Silva T.F., Romanel E.A.C., Andrade R.R.S., Farinelli L., Østerås M., Deluen C., Corrêa R.L., Schrago C.E.G., Vaslin M.F.S. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mol. Biol. 2011;12:40. doi: 10.1186/1471-2199-12-40. PubMed DOI PMC

Li J., Andika I.B., Shen J., Lv Y., Ji Y., Sun L., Chen J. Characterization of rice black-streaked dwarf virus-and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus. PLoS ONE. 2013;8:e66007. doi: 10.1371/journal.pone.0066007. PubMed DOI PMC

Donaire L., Barajas D., Martínez-García B., Martínez-Priego L., Pagán I., Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J. Virol. 2008;82:5167–5177. doi: 10.1128/JVI.00272-08. PubMed DOI PMC

Qi X., Bao F.S., Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE. 2009;4:e4971. doi: 10.1371/annotation/8d1a816e-b366-4833-b558-724ec28d1b87. PubMed DOI PMC

Ogwok E., Ilyas M., Alicai T., Rey M.E.C., Taylor N.J. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses. Virus Res. 2016;215:1–11. doi: 10.1016/j.virusres.2016.01.015. PubMed DOI PMC

Sahu P.P., Rai N.K., Puranik S., Roy A., Khan M., Prasad M. Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with Tomato Leaf Curl New Delhi Virus. Mol. Biotechnol. 2012;52:140–150. doi: 10.1007/s12033-011-9481-8. PubMed DOI

Li A., Li G., Zhao Y., Meng Z., Zhao M., Li C., Zhang Y., Li P., Ma C.-L., Xia H. Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Sci. Rep. 2018;8:13502. doi: 10.1038/s41598-018-31919-z. PubMed DOI PMC

Hu Q., Hollunder J., Niehl A., Kørner C.J., Gereige D., Windels D., Arnold A., Kuiper M., Vazquez F., Pooggin M. Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS ONE. 2011;6:e19549. doi: 10.1371/journal.pone.0019549. PubMed DOI PMC

Blevins T., Rajeswaran R., Shivaprasad P.V., Beknazariants D., Si-Ammour A., Park H.-S., Vazquez F., Robertson D., Meins F., Jr., Hohn T. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34:6233–6246. doi: 10.1093/nar/gkl886. PubMed DOI PMC

Csorba T., Bovi A., Dalmay T., Burgyán J. The p122 subunit of Tobacco Mosaic Virus replicase is a potent silencing suppressor and compromises both small interfering RNA-and microRNA-mediated pathways. J. Virol. 2007;81:11768–11780. doi: 10.1128/JVI.01230-07. PubMed DOI PMC

Vogler H., Akbergenov R., Shivaprasad P.V., Dang V., Fasler M., Kwon M.-O., Zhanybekova S., Hohn T., Heinlein M. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 2007;81:10379–10388. doi: 10.1128/JVI.00727-07. PubMed DOI PMC

Penzo M., Guerrieri A., Zacchini F., Treré D., Montanaro L. RNA pseudouridylation in physiology and medicine: For better and for worse. Genes. 2017;8:301. doi: 10.3390/genes8110301. PubMed DOI PMC

Zhao Y., Karijolich J., Glaunsinger B., Zhou Q. Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency. EMBO Rep. 2016;17:1441–1451. doi: 10.15252/embr.201642682. PubMed DOI PMC

Bunik V.I., Fernie A.R. Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: A cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem. J. 2009;422:405–421. doi: 10.1042/BJ20090722. PubMed DOI

Graf A., Trofimova L., Loshinskaja A., Mkrtchyan G., Strokina A., Lovat M., Tylicky A., Strumilo S., Bettendorff L., Bunik V.I. Up-regulation of 2-oxoglutarate dehydrogenase as a stress response. Int. J. Biochem. Cell Biol. 2013;45:175–189. doi: 10.1016/j.biocel.2012.07.002. PubMed DOI

Araujo W.L., Nunes-Nesi A., Trenkamp S., Bunik V.I., Fernie A.R. Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol. 2008;148:1782–1796. doi: 10.1104/pp.108.126219. PubMed DOI PMC

Jia M., Li Y., Lei L., Di D., Miao H., Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. Mol. Plant Pathol. 2012;13:251–262. doi: 10.1111/j.1364-3703.2011.00743.x. PubMed DOI PMC

Sattar S., Song Y., Anstead J.A., Sunkar R., Thompson G.A. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. Mol. Plant Microbe Interact. 2012;25:839–848. doi: 10.1094/MPMI-09-11-0252. PubMed DOI

Xia X., Shao Y., Jiang J., Du X., Sheng L., Chen F., Fang W., Guan Z., Chen S. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium) PLoS ONE. 2015;10:e0143720. doi: 10.1371/journal.pone.0143720. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identifying Putative Resistance Genes for Barley Yellow Dwarf Virus-PAV in Wheat and Barley

. 2023 Mar 09 ; 15 (3) : . [epub] 20230309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...