Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
308225/2018-0
CAPES, CNPq - International
E-02/202.961/2017
FAPEMIG and FAPERJ - International
PubMed
32012780
PubMed Central
PMC7072650
DOI
10.3390/biom10020192
PII: biom10020192
Knihovny.cz E-zdroje
- Klíčová slova
- 2-PAM, QM/MM method, VX, acetylcholinesterase,
- MeSH
- acetylcholinesterasa chemie účinky léků MeSH
- katalytická doména MeSH
- kvantová teorie MeSH
- lidé MeSH
- molekulární konformace MeSH
- organothiofosforové sloučeniny farmakologie MeSH
- pralidoximové sloučeniny chemie farmakologie MeSH
- protony MeSH
- serin chemie MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- organothiofosforové sloučeniny MeSH
- pralidoxime MeSH Prohlížeč
- pralidoximové sloučeniny MeSH
- protony MeSH
- serin MeSH
- VX MeSH Prohlížeč
In the present work, we performed a complementary quantum mechanical (QM) study to describe the mechanism by which deprotonated pralidoxime (2-PAM) could reactivate human (Homo sapiens sapiens) acetylcholinesterase (HssAChE) inhibited by the nerve agent VX. Such a reaction is proposed to occur in subsequent addition-elimination steps, starting with a nucleophile bimolecular substitution (SN2) mechanism through the formation of a trigonal bipyramidal transition state (TS). A near attack conformation (NAC), obtained in a former study using molecular mechanics (MM) calculations, was taken as a starting point for this project, where we described the possible formation of the TS. Together, this combined QM/MM study on AChE reactivation shows the feasibility of the reactivation occurring via attack of the deprotonated form of 2-PAM against the Ser203-VX adduct of HssAChE.
Zobrazit více v PubMed
Gaines T.B. Acute Toxicity of Pesticides. Toxicol. Appl. Pharm. 1969;14:515–534. doi: 10.1016/0041-008X(69)90013-1. PubMed DOI
Jeyaratnam J., Maroni M. Chapter 3 organophosphorus compounds. Toxicology. 1994;91:15–27. doi: 10.1016/0300-483X(94)90236-4. PubMed DOI
Smart F.R. History of Chemical and Biological warfare: An American perspective. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General. US Army; Washington, DC, USA: 1997. pp. 9–86. Chapter 2.
Sidell F.R. Nerve Agents. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General. US Army; Washington, DC, USA: 1997. pp. 129–180. Chapter 5.
Szinicz L. History of chemical and biological warfare agents. Toxicology. 2005;214:167–615. doi: 10.1016/j.tox.2005.06.011. PubMed DOI
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–429. doi: 10.1590/S0103-50532009000300003. DOI
Mangas I., Vilanova E., Estevez J., Franca T.C.C. Neurotoxic Effects Associated with Current Users of Organophosphorus Compounds. J. Braz. Chem. Soc. 2016;27:809–825.
Mangas I., Vilanova E., Estevez J., Franca T.C.C. New Insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology. 2017;376:30–43. doi: 10.1016/j.tox.2016.06.006. PubMed DOI
Quinn D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987;87:955–979. doi: 10.1021/cr00081a005. DOI
Antonijevic B., Stojilkovic M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC
Schwenk M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2018;293:253–263. doi: 10.1016/j.toxlet.2017.11.040. PubMed DOI
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI
Korabecny J., Soukup O., Dolezal R., Spilovska K., Nepovimova E., Andrs M., Nguyen T.D., Jun D., Musilek K., Kucerova-Chlupacova M., et al. From Pyridinium-based to Centrally Active Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2014;14:215–221. doi: 10.2174/1389557514666140219103138. PubMed DOI
Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K.K. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini Rev. Med. Chem. 2015;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI
Worek F., Thiermann H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 2013;139:249–259. doi: 10.1016/j.pharmthera.2013.04.009. PubMed DOI
Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI
Namba T., Hiraki K. PAM (pyridine-2-aldoxime methiodide) therapy for alkyl-phosphate poisoning. J. Am. Chem. Soc. 1958;166:1834–1839. PubMed
Malinak D., Korabecny J., Soukup O., Gorecki L., Nepovimova E., Psotka M., Dolezal R., Nguyen T.D., Mezeiova E., Musilek K., et al. A Review of the Synthesis of Quaternary Acetylcholinesterase Reactivators. Curr. Org. Chem. 2018;22:1619–1648. doi: 10.2174/1385272822666180711123529. DOI
Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Franca T.C.C. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM and obidoxime with VX-inhibited human acetylcholinesterase. A near attack conformation approach. J. Enzym. Inhib. Med. Chem. 2019;34:1018–1029. doi: 10.1080/14756366.2019.1609953. PubMed DOI PMC
Hur S., Bruice T.C. The near attack conformation approach to the study of the chorismate to prephenate reaction. Proc. Natl. Acad. Sci. USA. 2003;100:12015–12020. doi: 10.1073/pnas.1534873100. PubMed DOI PMC
Sadiq S.K., Coveney P.V. Computing the Role of Near Attack Conformations in an Enzyme-Catalyzed Nucleophilic Bimolecular Reaction. J. Chem. Theory Comput. 2015;11:316–324. doi: 10.1021/ct5008845. PubMed DOI
Sahu A.K., Gupta B., Sharma R., Singh Y., Musilek K., Kuca K., Ghosh K.K. Kinetic and physicochemical analysis of structurally different bis-pyridinium oximes against pesticide inhibited AChE. Indian J. Chem. 2015;4A:40–45.
Kalisiak J., Ralph E.C., Zhang J., Cashman J.R. Amidine-Oximes: Reactivators for Organophosphate Exposure. J. Med. Chem. 2011;54:3319–3330. doi: 10.1021/jm200054r. PubMed DOI
Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Franca T.C.C. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem-Biol. Interac. 2019;307:195–205. doi: 10.1016/j.cbi.2019.05.019. PubMed DOI
Ekström F., Hörnberg A., Artursson E., Hammarström L.G., Schneider G., Pang Y.P. Structure of HI-6•Sarin-Acetylcholinesterase Determined by X-Ray Crystallography and Molecular Dynamics Simulation: Reactivator Mechanism and Design. PLoS ONE. 2009;4:e5957. doi: 10.1371/journal.pone.0005957. PubMed DOI PMC
Allgardsson A., David Andersson C., Akfur C., Worek F., Linusson A., Ekström F. An unusual dimeric inhibitor of acetylcholinesterase: Cooperative binding of crystal violet. Molecules. 2017;22:1433. doi: 10.3390/molecules22091433. PubMed DOI PMC
Bester S.M., Adipietro K.A., Funk V.L., Myslinski J.M., Keul N.D., Cheung J., Wilder P.T., Wood D.J., Weber D.J., Height J.J., et al. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Sci. 2019;28:1106–1114. doi: 10.1002/pro.3625. PubMed DOI PMC
Wang J., Gu J., Leszczynski J., Feliks M., Sokalski W.A. Oxime-Induced Reactivation of Sarin-Inhibited AChE: A Theoretical Mechanisms Study. J. Phys. Chem. B. 2007;111:2404–2408. doi: 10.1021/jp067741s. PubMed DOI
Delfino R.T., Figueroa-Villar J.D. Nucleophilic Reactivation of Sarin-Inhibited Acetylcholinesterase: A Molecular Modeling Study. J. Phys. Chem. B. 2009;113:8402–8411. doi: 10.1021/jp810686k. PubMed DOI
Gonçalves A.S., França T.C.C., Figueroa-Villar J.D., Pascutti P.G. Molecular Dynamics Simulations and QM/MM Studies of the Reactivation by 2-PAM of Tabun Inhibited Human Acetylcholinesterase. J. Braz. Chem. Soc. 2011;22:155–165. doi: 10.1590/S0103-50532011000100021. DOI
Nepovimova E., Korabecny J., Dolezal R., Nguyen T.D., Jun D., Soukup O., Pasdiorova M., Jost P., Muckova L., Malinak D., et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC
Senn H.M., Thiel W. QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Edit. 2009;48:1198–1229. doi: 10.1002/anie.200802019. PubMed DOI
Heyden A., Lin H., Truhlar D.G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J. Phys. Chem. B. 2007;111:2231–2241. doi: 10.1021/jp0673617. PubMed DOI
Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI
Driant T., Nachon F., Ollivier C., Renard P., Derat E. On the Influence of the protonation states of active site residues on AChE reactivation: A QM/MM approach. Chem. Bio. Chem. 2017;18:666–675. doi: 10.1002/cbic.201600646. PubMed DOI
Chai J.D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI
Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014;140:18A301. doi: 10.1063/1.4869598. PubMed DOI
Dunning Jr T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann R.E., Burant J.C., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2004.
Ramalho T.C., Martins T.L.C., Figueroa-Villar J.D. A Theoretical and Experimental 13C and 15N NMR Investigation of Guanylhydrazones in Solution. Magn. Reson. Chem. 2003;41:983–988.
A-series agent A-234: initial in vitro and in vivo characterization