Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study

. 2020 Jan 27 ; 10 (2) : . [epub] 20200127

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32012780

Grantová podpora
308225/2018-0 CAPES, CNPq - International
E-02/202.961/2017 FAPEMIG and FAPERJ - International

In the present work, we performed a complementary quantum mechanical (QM) study to describe the mechanism by which deprotonated pralidoxime (2-PAM) could reactivate human (Homo sapiens sapiens) acetylcholinesterase (HssAChE) inhibited by the nerve agent VX. Such a reaction is proposed to occur in subsequent addition-elimination steps, starting with a nucleophile bimolecular substitution (SN2) mechanism through the formation of a trigonal bipyramidal transition state (TS). A near attack conformation (NAC), obtained in a former study using molecular mechanics (MM) calculations, was taken as a starting point for this project, where we described the possible formation of the TS. Together, this combined QM/MM study on AChE reactivation shows the feasibility of the reactivation occurring via attack of the deprotonated form of 2-PAM against the Ser203-VX adduct of HssAChE.

Zobrazit více v PubMed

Gaines T.B. Acute Toxicity of Pesticides. Toxicol. Appl. Pharm. 1969;14:515–534. doi: 10.1016/0041-008X(69)90013-1. PubMed DOI

Jeyaratnam J., Maroni M. Chapter 3 organophosphorus compounds. Toxicology. 1994;91:15–27. doi: 10.1016/0300-483X(94)90236-4. PubMed DOI

Smart F.R. History of Chemical and Biological warfare: An American perspective. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General. US Army; Washington, DC, USA: 1997. pp. 9–86. Chapter 2.

Sidell F.R. Nerve Agents. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General. US Army; Washington, DC, USA: 1997. pp. 129–180. Chapter 5.

Szinicz L. History of chemical and biological warfare agents. Toxicology. 2005;214:167–615. doi: 10.1016/j.tox.2005.06.011. PubMed DOI

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–429. doi: 10.1590/S0103-50532009000300003. DOI

Mangas I., Vilanova E., Estevez J., Franca T.C.C. Neurotoxic Effects Associated with Current Users of Organophosphorus Compounds. J. Braz. Chem. Soc. 2016;27:809–825.

Mangas I., Vilanova E., Estevez J., Franca T.C.C. New Insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology. 2017;376:30–43. doi: 10.1016/j.tox.2016.06.006. PubMed DOI

Quinn D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987;87:955–979. doi: 10.1021/cr00081a005. DOI

Antonijevic B., Stojilkovic M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Schwenk M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2018;293:253–263. doi: 10.1016/j.toxlet.2017.11.040. PubMed DOI

Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI

Korabecny J., Soukup O., Dolezal R., Spilovska K., Nepovimova E., Andrs M., Nguyen T.D., Jun D., Musilek K., Kucerova-Chlupacova M., et al. From Pyridinium-based to Centrally Active Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2014;14:215–221. doi: 10.2174/1389557514666140219103138. PubMed DOI

Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K.K. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini Rev. Med. Chem. 2015;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI

Worek F., Thiermann H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 2013;139:249–259. doi: 10.1016/j.pharmthera.2013.04.009. PubMed DOI

Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI

Namba T., Hiraki K. PAM (pyridine-2-aldoxime methiodide) therapy for alkyl-phosphate poisoning. J. Am. Chem. Soc. 1958;166:1834–1839. PubMed

Malinak D., Korabecny J., Soukup O., Gorecki L., Nepovimova E., Psotka M., Dolezal R., Nguyen T.D., Mezeiova E., Musilek K., et al. A Review of the Synthesis of Quaternary Acetylcholinesterase Reactivators. Curr. Org. Chem. 2018;22:1619–1648. doi: 10.2174/1385272822666180711123529. DOI

Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Franca T.C.C. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM and obidoxime with VX-inhibited human acetylcholinesterase. A near attack conformation approach. J. Enzym. Inhib. Med. Chem. 2019;34:1018–1029. doi: 10.1080/14756366.2019.1609953. PubMed DOI PMC

Hur S., Bruice T.C. The near attack conformation approach to the study of the chorismate to prephenate reaction. Proc. Natl. Acad. Sci. USA. 2003;100:12015–12020. doi: 10.1073/pnas.1534873100. PubMed DOI PMC

Sadiq S.K., Coveney P.V. Computing the Role of Near Attack Conformations in an Enzyme-Catalyzed Nucleophilic Bimolecular Reaction. J. Chem. Theory Comput. 2015;11:316–324. doi: 10.1021/ct5008845. PubMed DOI

Sahu A.K., Gupta B., Sharma R., Singh Y., Musilek K., Kuca K., Ghosh K.K. Kinetic and physicochemical analysis of structurally different bis-pyridinium oximes against pesticide inhibited AChE. Indian J. Chem. 2015;4A:40–45.

Kalisiak J., Ralph E.C., Zhang J., Cashman J.R. Amidine-Oximes: Reactivators for Organophosphate Exposure. J. Med. Chem. 2011;54:3319–3330. doi: 10.1021/jm200054r. PubMed DOI

Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Franca T.C.C. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem-Biol. Interac. 2019;307:195–205. doi: 10.1016/j.cbi.2019.05.019. PubMed DOI

Ekström F., Hörnberg A., Artursson E., Hammarström L.G., Schneider G., Pang Y.P. Structure of HI-6•Sarin-Acetylcholinesterase Determined by X-Ray Crystallography and Molecular Dynamics Simulation: Reactivator Mechanism and Design. PLoS ONE. 2009;4:e5957. doi: 10.1371/journal.pone.0005957. PubMed DOI PMC

Allgardsson A., David Andersson C., Akfur C., Worek F., Linusson A., Ekström F. An unusual dimeric inhibitor of acetylcholinesterase: Cooperative binding of crystal violet. Molecules. 2017;22:1433. doi: 10.3390/molecules22091433. PubMed DOI PMC

Bester S.M., Adipietro K.A., Funk V.L., Myslinski J.M., Keul N.D., Cheung J., Wilder P.T., Wood D.J., Weber D.J., Height J.J., et al. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Sci. 2019;28:1106–1114. doi: 10.1002/pro.3625. PubMed DOI PMC

Wang J., Gu J., Leszczynski J., Feliks M., Sokalski W.A. Oxime-Induced Reactivation of Sarin-Inhibited AChE: A Theoretical Mechanisms Study. J. Phys. Chem. B. 2007;111:2404–2408. doi: 10.1021/jp067741s. PubMed DOI

Delfino R.T., Figueroa-Villar J.D. Nucleophilic Reactivation of Sarin-Inhibited Acetylcholinesterase: A Molecular Modeling Study. J. Phys. Chem. B. 2009;113:8402–8411. doi: 10.1021/jp810686k. PubMed DOI

Gonçalves A.S., França T.C.C., Figueroa-Villar J.D., Pascutti P.G. Molecular Dynamics Simulations and QM/MM Studies of the Reactivation by 2-PAM of Tabun Inhibited Human Acetylcholinesterase. J. Braz. Chem. Soc. 2011;22:155–165. doi: 10.1590/S0103-50532011000100021. DOI

Nepovimova E., Korabecny J., Dolezal R., Nguyen T.D., Jun D., Soukup O., Pasdiorova M., Jost P., Muckova L., Malinak D., et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC

Senn H.M., Thiel W. QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Edit. 2009;48:1198–1229. doi: 10.1002/anie.200802019. PubMed DOI

Heyden A., Lin H., Truhlar D.G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J. Phys. Chem. B. 2007;111:2231–2241. doi: 10.1021/jp0673617. PubMed DOI

Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI

Driant T., Nachon F., Ollivier C., Renard P., Derat E. On the Influence of the protonation states of active site residues on AChE reactivation: A QM/MM approach. Chem. Bio. Chem. 2017;18:666–675. doi: 10.1002/cbic.201600646. PubMed DOI

Chai J.D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI

Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014;140:18A301. doi: 10.1063/1.4869598. PubMed DOI

Dunning Jr T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann R.E., Burant J.C., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2004.

Ramalho T.C., Martins T.L.C., Figueroa-Villar J.D. A Theoretical and Experimental 13C and 15N NMR Investigation of Guanylhydrazones in Solution. Magn. Reson. Chem. 2003;41:983–988.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...