Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32041096
PubMed Central
PMC7074492
DOI
10.3390/jcm9020436
PII: jcm9020436
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, cancer, clinical application, exosome, neurodegenerative disease,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Exosomes are a heterogenous subpopulation of extracellular vesicles 30-150 nm in range and of endosome-derived origin. We explored the exosome formation through different systems, including the endosomal sorting complex required for transport (ESCRT) and ESCRT-independent system, looking at the mechanisms of release. Different isolation techniques and specificities of exosomes from different tissues and cells are also discussed. Despite more than 30 years of research that followed their definition and indicated their important role in cellular physiology, the exosome biology is still in its infancy with rapidly growing interest. The reasons for the rapid increase in interest with respect to exosome biology is because they provide means of intercellular communication and transmission of macromolecules between cells, with a potential role in the development of diseases. Moreover, they have been investigated as prognostic biomarkers, with a potential for further development as diagnostic tools for neurodegenerative diseases and cancer. The interest grows further with the fact that exosomes were reported as useful vectors for drugs.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznań Poland
Department of Cancer Immunology Poznan University of Medical Sciences 61 866 Poznań Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznań Poland
Department of Toxicology Poznan University of Medical Sciences 61 131 Poznań Poland
Department of Veterinary Surgery Nicolaus Copernicus University in Torun 87 100 Toruń Poland
Institute of Veterinary Medicine Nicolaus Copernicus University in Toruń 87 100 Toruń Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Gould S.J., Raposo G. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles. 2013;2:3–5. doi: 10.3402/jev.v2i0.20389. PubMed DOI PMC
Lötvall J., Hill A.F., Hochberg F., Buzás E.I., Di Vizio D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2014;3:1–6. doi: 10.3402/jev.v3.26913. PubMed DOI PMC
Shin S., Han D., Park M.C., Mun J.Y., Choi J., Chun H., Kim S., Hong J.W. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-08826-w. PubMed DOI PMC
Dignat-George F., Boulanger C.M. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol. 2011;31:27–33. doi: 10.1161/ATVBAHA.110.218123. PubMed DOI
Sturk A., Nieuwland R., van der Pol E., Boing A.N., Harrison P. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012;64:676–705. PubMed
Bobrie A., Colombo M., Krumeich S., Raposo G., Théry C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles. 2012 doi: 10.3402/jev.v1i0.18397. PubMed DOI PMC
Baietti M.F., Zhang Z., Mortier E., Melchior A., Degeest G., Geeraerts A., Ivarsson Y., Depoortere F., Coomans C., Vermeiren E., et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012;14:677–685. doi: 10.1038/ncb2502. PubMed DOI
Bebelman M.P., Smit M.J., Pegtel D.M., Baglio S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther.. 2018;188:1–11. doi: 10.1016/j.pharmthera.2018.02.013. PubMed DOI
Théry C., Zitvogel L., Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002;2:569–579. doi: 10.1038/nri855. PubMed DOI
Keller S., Ridinger J., Rupp A.K., Janssen J.W.G., Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 2011;9:1–9. doi: 10.1186/1479-5876-9-86. PubMed DOI PMC
Pan B.T., Johnstone R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell. 1983;33:967–978. doi: 10.1016/0092-8674(83)90040-5. PubMed DOI
Harding C., Stahl P. Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem. Biophys. Res. Commun. 1983;113:650–658. doi: 10.1016/0006-291X(83)91776-X. PubMed DOI
Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 1987;262:9412–9420. PubMed
Johnstone R.M. Maturation of reticulocytes: Formation of exosomes as a mechanism for shedding membrane proteins. The Jeanne Manery-Fisher Memorial Lecture 1991. Biochem. Cell Biol. 1992;70:179–190. doi: 10.1139/o92-028. PubMed DOI
Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J.G.H. B Lymphocytes secrete antigen-Presentingvesicles. J. Exp. Med. 1996;183:1161–1172. doi: 10.1084/jem.183.3.1161. PubMed DOI PMC
Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat. Med. 1998;4:594–600. doi: 10.1038/nm0598-594. PubMed DOI
Tkach M., Théry C. Communication by extracellular vesicles: Where we are and where we need to go. Cell. 2016;164:1226–1232. doi: 10.1016/j.cell.2016.01.043. PubMed DOI
Keerthikumar S., Chisanga D., Ariyaratne D., Al Saffar H., Anand S., Zhao K., Samuel M., Pathan M., Jois M., Chilamkurti N., et al. ExoCarta: A web-based compendium of exosomal cargo. J. Mol. Biol. 2015;428:688–692. doi: 10.1016/j.jmb.2015.09.019. PubMed DOI PMC
Gu Y., Li M., Wang T., Liang Y., Zhong Z., Wang X., Zhou Q., Chen L., Lang Q., He Z., et al. Lactation-Related microRNA expression profiles of porcine breast milk exosomes. PLoS ONE. 2012;7:e43691. doi: 10.1371/journal.pone.0043691. PubMed DOI PMC
Simhadri V.R., Reiners K.S., Hansen H.P., Topolar D., Simhadri V.L., Nohroudi K., Kufer T.A., Engert A., Pogge von Strandmann E. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS ONE. 2008;3:e3377. doi: 10.1371/journal.pone.0003377. PubMed DOI PMC
Zhang M., Jin K., Gao L., Zhang Z., Li F., Zhou F., Zhang L. Methods and technologies for exosome Isolation and characterization. Small Methods. 2018;2 doi: 10.1002/smtd.201800021. DOI
Hanson P.I., Cashikar A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 2011;28:337–362. doi: 10.1146/annurev-cellbio-092910-154152. PubMed DOI
Futter C.E., Pearse A., Hewlett L.J., Hopkins C.R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 1996;132:1011–1023. doi: 10.1083/jcb.132.6.1011. PubMed DOI PMC
Bebelman M., Bun P., Huveneers S., van Niel G., Pegtel D.M., Verweij F.J. Real-Time imaging of multivesicular body-plasma membrane fusion to quantify exosome release from single cells. Nat. Protoc. 2019;15:102–121. doi: 10.1038/s41596-019-0245-4. PubMed DOI
Doyle L.M., Wang M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. doi: 10.3390/cells8070727. PubMed DOI PMC
Zhang Y., Liu Y., Liu H., Tang W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9 doi: 10.1186/s13578-019-0282-2. PubMed DOI PMC
Henne W.M., Buchkovich N.J., Emr S.D. The ESCRT pathway. Dev. Cell. 2011;21:77–91. doi: 10.1016/j.devcel.2011.05.015. PubMed DOI
Hessvik N.P., Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 2018;75:193–208. doi: 10.1007/s00018-017-2595-9. PubMed DOI PMC
Babst M., Katzmann D.J., Snyder W.B., Wendland B., Emr S.D. Endosome-Associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell. 2002;3:283–289. doi: 10.1016/S1534-5807(02)00219-8. PubMed DOI
Progida C., Malerod L., Stuffers S., Brech A., Bucci C., Stenmark H. RILP is required for the proper morphology and function of late endosomes. J. Cell Sci. 2007;120:3729–3737. doi: 10.1242/jcs.017301. PubMed DOI
Colombo M., Raposo G., Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. PubMed DOI
Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F., Schwille P., Brügger B., Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–1247. doi: 10.1126/science.1153124. PubMed DOI
Rana S., Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins: A hypothesis. Biochem. Soc. Trans. 2011;39:559–562. doi: 10.1042/BST0390559. PubMed DOI
van Niel G., Charrin S., Simoes S., Romao M., Rochin L., Saftig P., Marks M.S., Rubinstein E., Raposo G. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis. Dev. Cell. 2011;21:708–721. doi: 10.1016/j.devcel.2011.08.019. PubMed DOI PMC
Chairoungdua A., Smith D.L., Pochard P., Hull M., Caplan M.J. Exosome release of β-catenin: A novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 2010;190:1079–1091. doi: 10.1083/jcb.201002049. PubMed DOI PMC
Nazarenko I., Rana S., Baumann A., McAlear J., Hellwig A., Trendelenburg M., Lochnit G., Preissner K.T., Zöller M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–1678. doi: 10.1158/0008-5472.CAN-09-2470. PubMed DOI
Perez-Hernandez D., Gutiérrez-Vázquez C., Jorge I., López-Martín S., Ursa A., Sánchez-Madrid F., Vázquez J., Yáñez-Mó M. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 2013;288:11649–11661. doi: 10.1074/jbc.M112.445304. PubMed DOI PMC
De Gassart A., Geminard C., Fevrier B., Vidal M. Lipid raft–associated protein sorting in exosomes. Blood. 2015;102:4336–4345. doi: 10.1182/blood-2003-03-0871. PubMed DOI
Strauss K., Goebel C., Runz H., Möbius W., Weiss S., Feussner I., Simons M., Schneider A. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J. Biol. Chem. 2010;285:26279–26288. doi: 10.1074/jbc.M110.134775. PubMed DOI PMC
Laulagnier K., Grand D., Dujardin A., Hamdi S., Vincent-Schneider H., Lankar D., Salles J.-P., Bonnero C., Perreta B., Recorda M. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 2004;572:11–14. doi: 10.1016/j.febslet.2004.06.082. PubMed DOI
Ghossoub R., Lembo F., Rubio A., Gaillard C.B., Bouchet J., Vitale N., Slavík J., Machala M., Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 2014;5:3477. doi: 10.1038/ncomms4477. PubMed DOI
Sahu R., Kaushik S., Clement C.C., Cannizzo E.S., Scharf B., Follenzi A., Potolicchio I., Nieves E., Cuervo A.M., Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell. 2011;20:131–139. doi: 10.1016/j.devcel.2010.12.003. PubMed DOI PMC
Zhu H., Yu R.Y.L., Li W., Brancho D., Chow C.-W., Guariglia S., Peinado H., Lyden D., Salzer J., Bennett C. Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol. Biol. Cell. 2013;24:1619–1637. doi: 10.1091/mbc.e12-07-0544. PubMed DOI PMC
Villarroya-Beltri C., Baixauli F., Mittelbrunn M., Fernández-Delgado I., Torralba D., Moreno-Gonzalo O., Baldanta S., Enrich C., Guerra S., Sánchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 2016;7:13588. doi: 10.1038/ncomms13588. PubMed DOI PMC
Hoshino D., Kirkbride K.C., Costello K., Clark E.S., Sinha S., Grega-Larson N., Tyska M.J., Weaver A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5:1159–1168. doi: 10.1016/j.celrep.2013.10.050. PubMed DOI PMC
Villarroya-Beltri C., Gutiérrez-Vázquez C., Sánchez-Cabo F., Pérez-Hernández D., Vázquez J., Martin-Cofreces N., Martínez D.J., Pascual-Montano A., Mittelbrunn M., Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 2013;4:2980. doi: 10.1038/ncomms3980. PubMed DOI PMC
Mathieu M., Martin-Jaular L., Lavieu G., Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019;21:9–17. doi: 10.1038/s41556-018-0250-9. PubMed DOI
Lane R.E., Korbie D., Anderson W., Vaidyanathan R., Trau M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 2015;5:7639. doi: 10.1038/srep07639. PubMed DOI PMC
Jung M.K., Mun J.Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 2018;2018 doi: 10.3791/56482. PubMed DOI PMC
Rikkert L.G., Nieuwland R., Terstappen L.W.M.M., Coumans F.A.W. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J. Extracell. Vesicles. 2019;8 doi: 10.1080/20013078.2018.1555419. PubMed DOI PMC
Willms E., Cabañas C., Mäger I., Wood M.J.A., Vader P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 2018;9:738. doi: 10.3389/fimmu.2018.00738. PubMed DOI PMC
Kalra H., Drummen G.P.C., Mathivanan S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 2016;17:170. doi: 10.3390/ijms17020170. PubMed DOI PMC
Williams C., Palviainen M., Reichardt N.C., Siljander P.R.M., Falcón-Pérez J.M. Metabolomics applied to the study of extracellular vesicles. Metabolites. 2019;9:276. doi: 10.3390/metabo9110276. PubMed DOI PMC
Skotland T., Hessvik N.P., Sandvig K., Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 2019;60:9–18. doi: 10.1194/jlr.R084343. PubMed DOI PMC
Skotland T., Sandvig K., Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017;66:30–41. doi: 10.1016/j.plipres.2017.03.001. PubMed DOI
Moreau D., Vacca F., Vossio S., Scott C., Colaco A., Paz Montoya J., Ferguson C., Damme M., Moniatte M., Parton R.G., et al. Drug-Induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice. EMBO Rep. 2019;20:e47055. doi: 10.15252/embr.201847055. PubMed DOI PMC
Turchinovich A., Drapkina O., Tonevitsky A. Transcriptome of extracellular vesicles: State-of-the-art. Front. Immunol. 2019;10:202. doi: 10.3389/fimmu.2019.00202. PubMed DOI PMC
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-Mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Luo S.-S., Ishibashi O., Ishikawa G., Ishikawa T., Katayama A., Mishima T., Takizawa T., Shigihara T., Goto T., Izumi A. Human villous trophoblasts express and secrete placenta-specific MicroRNAs into maternal circulation via exosomes1. Biol. Reprod. 2009;81:717–729. doi: 10.1095/biolreprod.108.075481. PubMed DOI
Gibbings D.J., Ciaudo C., Erhardt M., Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 2009;11:1143–1149. doi: 10.1038/ncb1929. PubMed DOI
Lässer C., Seyed Alikhani V., Ekström K., Eldh M., Torregrosa Paredes P., Bossios, Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J. Transl. Med. 2011;14:9. PubMed PMC
Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011;29:341–345. doi: 10.1038/nbt.1807. PubMed DOI
Fatima F., Nawaz M. Vesiculated long non-coding RNAs: Offshore packages deciphering trans-regulation between cells, cancer progression and resistance to therapies. Non Coding RNA. 2017;3:10. doi: 10.3390/ncrna3010010. PubMed DOI PMC
Rahbarghazi R., Jabbari N., Sani N.A., Asghari R., Salimi L., Kalashani S.A., Feghhi M., Etemadi T., Akbariazar E., Mahmoudi M., et al. Tumor-Derived extracellular vesicles: Reliable tools for cancer diagnosis and clinical applications. Cell Commun. Signal. 2019;17:73. doi: 10.1186/s12964-019-0390-y. PubMed DOI PMC
Statello L., Maugeri M., Garre E., Nawaz M., Wahlgren J., Papadimitriou A., Lundqvist C., Lindfors L., Collén A., Sunnerhagen P., et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE. 2018;13:e0195969. doi: 10.1371/journal.pone.0195969. PubMed DOI PMC
Thakur B.K., Zhang H., Becker A., Matei I., Huang Y., Costa-Silva B., Zheng Y., Hoshino A., Brazier H., Xiang J., et al. Double-Stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014;24:766–769. doi: 10.1038/cr.2014.44. PubMed DOI PMC
Konečná B., Tóthová L., Repiská Exosomes-associated dna—New marker in pregnancy complications? Int. J. Mol. Sci. 2019;20:2890. doi: 10.3390/ijms20122890. PubMed DOI PMC
Jeppesen D.K., Fenix A.M., Franklin J.L., Higginbotham J.N., Zhang Q., Zimmerman L.J., Liebler D.C., Ping J., Liu Q., Evans R., et al. Reassessment of exosome composition. Cell. 2019;177:428–445. doi: 10.1016/j.cell.2019.02.029. PubMed DOI PMC
Klingeborn M., Dismuke W.M., Bowes Rickman C., Stamer W.D. Roles of exosomes in the normal and diseased eye. Prog. Retin. Eye Res. 2017;59:158–177. doi: 10.1016/j.preteyeres.2017.04.004. PubMed DOI PMC
Batrakova E.V., Kim M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control Release. 2015;219:396–405. doi: 10.1016/j.jconrel.2015.07.030. PubMed DOI PMC
Théry C., Amigorena S., Raposo G., Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006;3 doi: 10.1002/0471143030.cb0322s30. PubMed DOI
Yang X., Sun C., Wang L., Guo X. New insight into isolation, identification techniques and medical applications of exosomes. J. Control Release. 2019;308:119–129. doi: 10.1016/j.jconrel.2019.07.021. PubMed DOI
Cheruvanky A., Zhou H., Pisitkun T., Kopp J.B., Knepper M.A., Yuen P.S.T., Star R.A. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Physiol. 2007;292:F1657–F1661. doi: 10.1152/ajprenal.00434.2006. PubMed DOI PMC
Zeringer E., Barta T., Li M., Vlassov A.V. Strategies for isolation of exosomes. Cold Spring Harb. Protoc. 2015;2015:319–323. doi: 10.1101/pdb.top074476. PubMed DOI
Lewis G.D., Metcalf T.G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl. Environ. Microbiol. 1988;54:1983–1988. doi: 10.1128/AEM.54.8.1983-1988.1988. PubMed DOI PMC
Yakimchuk K. Exosomes: Isolation methods and specific markers. Mater. Methods. 2015;5 doi: 10.13070/mm.en.5.1450. DOI
Li P., Kaslan M., Lee S.H., Yao J., Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7:789–804. doi: 10.7150/thno.18133. PubMed DOI PMC
Moser A.C., Hage D.S. Immunoaffinity chromatography: An introduction to applications and recent developments. Bioanalysis. 2010;2:769–790. doi: 10.4155/bio.10.31. PubMed DOI PMC
Liga A., Vliegenthart A.D.B., Oosthuyzen W., Dear J.W., Kersaudy-Kerhoas M. Exosome isolation: A microfluidic road-map. Lab Chip. 2015;15:2388–2394. doi: 10.1039/C5LC00240K. PubMed DOI
Nojima H., Freeman C.M., Schuster R.M., Japtok L., Kleuser B., Edwards M.J., Gulbins E., Lentsch A.B. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J. Hepatol. 2016;64:60–68. doi: 10.1016/j.jhep.2015.07.030. PubMed DOI PMC
Sung S., Kim J., Jung Y. Liver-Derived exosomes and their implications in liver. Pathobiology. 2018;19:3715. doi: 10.3390/ijms19123715. PubMed DOI PMC
Adamiak M., Sahoo S. Exosomes in myocardial repair: Advances and challenges in the development of next-generation therapeutics. Mol. Ther. 2018;26:1635–1643. doi: 10.1016/j.ymthe.2018.04.024. PubMed DOI PMC
Davidson S.M., Yellon D.M. Molecular aspects of medicine exosomes and cardioprotection e A critical analysis. Mol. Asp. Med. 2018;60:104–114. doi: 10.1016/j.mam.2017.11.004. PubMed DOI PMC
Gupta S., Knowlton A.A. HSP60 trafficking in adult cardiac myocytes: Role of the exosomal pathway. Am. J. Physiol. Circ. Physiol. 2007;292:H3052–H3056. doi: 10.1152/ajpheart.01355.2006. PubMed DOI
Liang Y., Sahoo S. Exosomes explosion for cardiac resuscitation. J. Am. Coll. Cardiol. 2015;66:612–615. doi: 10.1016/j.jacc.2015.06.1302. PubMed DOI PMC
Yang J., Yu X., Xue F., Li Y., Liu W., Zhang S. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk. Am. J. Transl. Res. 2018;10:4350–4366. PubMed PMC
Vella L.J., Scicluna B.J., Cheng L., Bawden E.G., Masters C.L., Ang C.S., Willamson N., McLean C., Barnham K.J., Hill A.F. A rigorous method to enrich for exosomes from brain tissue. J. Extracell. Vesicles. 2017;6 doi: 10.1080/20013078.2017.1348885. PubMed DOI PMC
Pérez-González R., Gauthier S.A., Kumar A., Saito M., Saito M., Levy E. A Method for isolation of extracellular vesicles and characterization of exosomes from brain extracellular space. Methods Mol. Biol. 2017;1545:139–151. PubMed
Kapogiannis D., Boxer A., Schwartz J.B., Abner E.L., Biragyn A., Masharani U., Frassetto L., Petersen R.C., Miller B.L., Goetzl E.J. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J. 2015;29:589–596. doi: 10.1096/fj.14-262048. PubMed DOI PMC
Krämer-Albers E.M., Bretz N., Tenzer S., Winterstein C., Möbius W., Berger H., Nave K.A., Schild H., Trotter J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteom. Clin. Appl. 2007;1:1446–1461. doi: 10.1002/prca.200700522. PubMed DOI
Potolicchio I., Carven G.J., Xu X., Stipp C., Riese R.J., Stern L.J., Santambrogio L. Proteomic analysis of microglia-derived exosomes: Metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 2005;175:2237–2243. doi: 10.4049/jimmunol.175.4.2237. PubMed DOI
Gao M., Gao W., Papadimitriou J.M., Zhang C., Gao J., Zheng M. Exosomes—The enigmatic regulators of bone homeostasis. Bone Res. 2018;6 doi: 10.1038/s41413-018-0039-2. PubMed DOI PMC
Li D., Liu J., Guo B., Liang C., Dang L., Lu C., He X., Cheung H., Xu L., Lu C., et al. Osteoclast-Derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 2016;7:1–16. doi: 10.1038/ncomms10872. PubMed DOI PMC
Zhang Y., Yu M., Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016;49:3–13. doi: 10.1111/cpr.12233. PubMed DOI PMC
Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015;9:358–367. doi: 10.1002/prca.201400114. PubMed DOI PMC
Tang X., Lu H., Dooner M., Chapman S., Quesenberry P.J., Ramratnam B. Exosomal Tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes. JCI Insight. 2018;3 doi: 10.1172/jci.insight.95676. PubMed DOI PMC
Dias M.V.S., Costa C.S., Da Silva L.L.P. The ambiguous roles of extracellular vesicles in HIV replication and pathogenesis. Front. Microbiol. 2018;9:2411. doi: 10.3389/fmicb.2018.02411. PubMed DOI PMC
Patters B.J., Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology. 2018;15:79. doi: 10.1186/s12977-018-0462-x. PubMed DOI PMC
Mukhamedova N., Hoang A., Dragoljevic D., Dubrovsky L., Pushkarsky T., Low H., Ditiatkovski M., Fu Y., Ohkawa R., Meikle P.J., et al. Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLOS Pathog. 2019;15:e1007907. doi: 10.1371/journal.ppat.1007907. PubMed DOI PMC
Saeedi S., Israel S., Nagy C., Turecki G. The emerging role of exosomes in mental disorders. Transl. Psychiatry. 2019;9:122. doi: 10.1038/s41398-019-0459-9. PubMed DOI PMC
Zagrean A.M., Hermann D.M., Opris I., Zagrean L., Popa-Wagner A. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. therapeutic implications. Front. Neurosci. 2018;12:811. doi: 10.3389/fnins.2018.00811. PubMed DOI PMC
Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., Simons K. Sciences of the USA 11172–11177. Proc. Natl. Acad. Sci. USA. 2006;103:11172–11177. doi: 10.1073/pnas.0603838103. PubMed DOI PMC
Saman S., Kim W.H., Raya M., Visnick Y., Miro S., Saman S., Jackson B., Mckee A., Alvarez V.E., Lee N.C.Y., et al. Exosome-Associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 2012;287:3842–3849. doi: 10.1074/jbc.M111.277061. PubMed DOI PMC
Goetzl E.J., Boxer A., Schwartz J.B., Abner E.L., Petersen R.C., Miller B.L., Kapogiannis D. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015;85:40–47. doi: 10.1212/WNL.0000000000001702. PubMed DOI PMC
Kanninen K.M., Bister N., Koistinaho J., Malm T. Biochimica et Biophysica Acta Exosomes as new diagnostic tools in CNS diseases. BBA Mol. Basis Dis. 2016;1862:403–410. doi: 10.1016/j.bbadis.2015.09.020. PubMed DOI
Benussi L., Ciani M., Tonoli E., Morbin M., Palamara L., Albani D., Fusco F., Forloni G., Glionna M., Baco M., et al. Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiol. Aging. 2016;40:41–49. doi: 10.1016/j.neurobiolaging.2016.01.001. PubMed DOI
Fraser K.B., Rawlins A.B., Clark R.G., Alcalay R.N., Standaert D.G., Liu N., Parkinson’s Disease Biomarker Program Consortium. West A.B. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov. Disord. 2016;31:1543–1550. doi: 10.1002/mds.26686. PubMed DOI PMC
Westergard T., Jensen B.K., Wen X., Cai J., Kropf E., Iacovitti L., Pasinelli P., Trotti D. Cell-to-Cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep. 2016;17:645–652. doi: 10.1016/j.celrep.2016.09.032. PubMed DOI PMC
Zhang W., Ou X., Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int. J. Oncol. 2019;54:1719–1733. doi: 10.3892/ijo.2019.4742. PubMed DOI PMC
Hartmann A., Muth C., Dabrowski O., Krasemann S., Glatzel M. Exosomes and the prion protein: More than one truth. Front. Neurosci. 2017;11:194. doi: 10.3389/fnins.2017.00194. PubMed DOI PMC
Kenney K., Motamedi V., Puccio A., Diaz-Arrastia R., Edwards K., Gill J. Exosomes in acquired neurological disorders: New insights into pathophysiology and treatment. Mol. Neurobiol. 2018;55:9280–9293. PubMed
Karttunen J., Heiskanen M., Lipponen A., Poulsen D., Pitkänen A. Extracellular vesicles as diagnostics and therapeutics for structural epilepsies. Int. J. Mol. Sci. 2019;20:259. doi: 10.3390/ijms20061259. PubMed DOI PMC
Costa-Silva B., Aiello N.M., Ocean A.J., Singh S., Zhang H., Thakur B.K., Becker A., Hoshino A., Mark M.T., Molina H., et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015;17:816–826. doi: 10.1038/ncb3169. PubMed DOI PMC
Skog J., Wurdinger T., Rijn SVan Meijer D., Gainche L., Sena-esteves M., Curry W.T., Jr., Carter R.S., Krichevsky A.M., Breakefield O.X. Glioblastoma microvesicles transport RNA and protein that promote promote tumor growth and provide diagnostic biomarkers Johan. Nat. Cell Biol. 2012;10:1470–1476. doi: 10.1038/ncb1800. PubMed DOI PMC
Luga V., Zhang L., Viloria-Petit A.M., Ogunjimi A.A., Inanlou M.R., Chiu E., Buchanan M., Hosein A.N., Basik M., Wrana J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–1556. doi: 10.1016/j.cell.2012.11.024. PubMed DOI
Kurywchak P., Tavormina J., Kalluri R. The emerging roles of exosomes in the modulation of immune responses in cancer. Genome Med. 2018;10:23. doi: 10.1186/s13073-018-0535-4. PubMed DOI PMC
O’Driscoll L. Expanding on exosomes and ectosomes in cancer. N. Engl. J. Med. 2015;372:2359–2362. doi: 10.1056/NEJMcibr1503100. PubMed DOI
Mao Y., Wang Y., Dong L., Zhang Y., Zhang Y., Wang C., Zhang Q., Yang S., Cao L., Zhang X., et al. Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. J. Exp. Clin. Cancer Res. 2019;38:389. doi: 10.1186/s13046-019-1384-8. PubMed DOI PMC
Zhang Y.-F., Shi J.-B., Li C. Small extracellular vesicle loading systems in cancer therapy: Current status and the way forward. Cytotherapy. 2019;21:1122–1136. doi: 10.1016/j.jcyt.2019.10.002. PubMed DOI
Zhang K.L., Wang Y.J., Sun J., Zhou J., Xing C., Huang G., Li J., Yang H. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy. Chem. Sci. 2019;10:1555–1561. doi: 10.1039/C8SC03224F. PubMed DOI PMC
Chalmin F., Ladoire S., Mignot G., Vincent J., Bruchard M., Remy-Martin J.-P., Boireau W., Rouleau A., Simon B., Lanneau D., et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Investig. 2010;120:457–471. doi: 10.1172/JCI40483. PubMed DOI PMC
Yoshioka Y., Kosaka N., Konishi Y., Ohta H., Okamoto H., Sonoda H., Nonaka R., Yamamoto H., Ishii H., Mori M., et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 2014;5:3591. doi: 10.1038/ncomms4591. PubMed DOI PMC
Melo S.A., Luecke L.B., Kahlert C., Fernandez A.F., Seth T., Kaye J., LeBleu V.S., Mittendorf E.A., Weitz J., Rahbari N., et al. Glypican-1 identiefies cancer exosomes and facilitates early detection of cancer. Nature. 2015;523:177–182. doi: 10.1038/nature14581. PubMed DOI PMC
Xu R., Rai A., Chen M., Suwakulsiri W., Greening D.W., Simpson R.J. Extracellular vesicles in cancer—Implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 2018;15:617–638. doi: 10.1038/s41571-018-0036-9. PubMed DOI
Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015;6:1–13. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC
Agrawal U., Sharma R., Gupta M., Vyas S.P. Is nanotechnology a boon for oral drug delivery? Drug Discov. Today. 2014;19:1530–1546. doi: 10.1016/j.drudis.2014.04.011. PubMed DOI
Chai R., Wee R., Yeo Y., Hian K., Kiang S. Exosomes for drug deliver—A novel application for the mesenchymal stem cell. Biotechnol. Adv. 2013;31:543–551. PubMed
Ha D., Yang N., Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B. 2016;6:287–296. doi: 10.1016/j.apsb.2016.02.001. PubMed DOI PMC
Sun D., Zhuang X., Xiang X., Liu Y., Zhang S., Liu C., Barnes S., Grizzle W., Miller D., Zhang H. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010;18:1606–1614. doi: 10.1038/mt.2010.105. PubMed DOI PMC
Haney M.J., Klyachko N.L., Zhao Y., Gupta R., Plotnikova E.G., He Z., Patel T., Piroyan A., Sokolsky M., Kabanov A.V., et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control Release. 2015;207:18–30. doi: 10.1016/j.jconrel.2015.03.033. PubMed DOI PMC
Srivastava A., Amreddy N., Babu A., Panneerselvam J., Mehta M., Muralidharan R., Chen A., Zhao Y.D., Razaq M., Riedinger N., et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci. Rep. 2016;6:38541. PubMed PMC
Lou G., Song X., Yang F., Wu S., Wang J., Chen Z., Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol. 2015;8:122. doi: 10.1186/s13045-015-0220-7. PubMed DOI PMC