The Role of miR-21 in Osteoblasts-Osteoclasts Coupling In Vitro

. 2020 Feb 19 ; 9 (2) : . [epub] 20200219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32093031

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts' differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.

Zobrazit více v PubMed

Zhao Z., Li X., Zou D., Lian Y., Tian S., Dou Z. Expression of microRNA-21 in osteoporotic patients and its involvement in the regulation of osteogenic differentiation. Exp. Ther. Med. 2019;17:709–714. doi: 10.3892/etm.2018.6998. PubMed DOI PMC

Cheng V.K., Au P.C., Tan K.C., Cheung C. MicroRNA and Human Bone Health. JBMR Plus. 2018;3:2–13. doi: 10.1002/jbm4.10115. PubMed DOI PMC

Jia B., Zhang Z., Qiu X., Chu H., Sun X., Zheng X., Zhao J., Li Q. Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells. Exp. Ther. Med. 2018;16:1111–1120. doi: 10.3892/etm.2018.6303. PubMed DOI PMC

Li Z., Hassan M.Q., Jafferji M., Aqeilan R.I., Garzon R., Croce C.M., van Wijnen A.J., Stein J.L., Stein G.S., Lian J.B. Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation. J. Biol. Chem. 2009;284:15676–15684. doi: 10.1074/jbc.M809787200. PubMed DOI PMC

Fröhlich L.F. MicroRNAs at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells. 2019;8:121. doi: 10.3390/cells8020121. PubMed DOI PMC

Wei F., Yang S., Guo Q., Zhang X., Ren D., Lv T., Xu X. MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-16720-8. PubMed DOI PMC

Yang C., Liu X., Zhao K., Zhu Y., Hu B., Zhou Y., Wang M., Wu Y., Zhang C., Xu J., et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res. Ther. 2019;10:65. PubMed PMC

Feng Y.-H., Tsao C.-J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016;5:395–402. doi: 10.3892/br.2016.747. PubMed DOI PMC

Medina P.P., Nolde M., Slack F.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90. doi: 10.1038/nature09284. PubMed DOI

Hu X., Li L., Lu Y., Yu X., Chen H., Yin Q., Zhang Y. miRNA-21 inhibition inhibits osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-β1 signaling pathway. Oncol. Lett. 2018;16:4337–4342. doi: 10.3892/ol.2018.9177. PubMed DOI PMC

Li H., Yang F., Wang Z., Fu Q., Liang A. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol. Med. Rep. 2015;12:1561–1567. doi: 10.3892/mmr.2015.3497. PubMed DOI

Li X., Guo L., Liu Y., Su Y., Xie Y., Du J., Zhou J., Ding G., Wang H., Bai Y., et al. MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem. Biophys. Res. Commun. 2017;493:928–933. doi: 10.1016/j.bbrc.2017.09.119. PubMed DOI

Valenti M.T., Deiana M., Cheri S., Dotta M., Zamboni F., Gabbiani D., Schena F., Dalle Carbonare L., Mottes M. Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis. Cells. 2019;8:742. doi: 10.3390/cells8070742. PubMed DOI PMC

Meng Y.-B., Li X., Li Z.-Y., Zhao J., Yuan X.-B., Ren Y., Cui Z.-D., Liu Y.-D., Yang X.-J. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J. Orthop. Res. 2015;33:957–964. doi: 10.1002/jor.22884. PubMed DOI

Molténi A., Modrowski D., Hott M., Marie P.J. Alterations of matrix- and cell-associated proteoglycans inhibit osteogenesis and growth response to fibroblast growth factor-2 in cultured rat mandibular condyle and calvaria. Cell Tissue Res. 1999;295:523–536. doi: 10.1007/s004410051258. PubMed DOI

Lozano C., Duroux-Richard I., Firat H., Schordan E., Apparailly F. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00375. PubMed DOI PMC

Kobayashi Y., Udagawa N., Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit. Rev. Eukaryot. Gene Exp. 2009;19:61–72. doi: 10.1615/CritRevEukarGeneExpr.v19.i1.30. PubMed DOI

Amano S., Sekine K., Bonewald L., Ohmori Y. A Novel Osteoclast Precursor Cell Line, 4B12, Recapitulates the Features of Primary Osteoclast Differentiation and Function: Enhanced Transfection Efficiency Before and After Differentiation. J. Cell Physiol. 2009;221:40–53. doi: 10.1002/jcp.21827. PubMed DOI PMC

Amano S., Chang Y.-T., Fukui Y. ERK5 Activation Is Essential for Osteoclast Differentiation. PLoS ONE. 2015;10:e0125054. doi: 10.1371/journal.pone.0125054. PubMed DOI PMC

Androvic P., Valihrach L., Elling J., Sjoback R., Kubista M. Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017;45:e144. doi: 10.1093/nar/gkx588. PubMed DOI PMC

Androvic P., Romanyuk N., Urdzikova-Machova L., Rohlova E., Kubista M., Valihrach L. Two-tailed RT-qPCR panel for quality control of circulating microRNA studies. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-40513-w. PubMed DOI PMC

Smieszek A., Kornicka K., Szłapka-Kosarzewska J., Androvic P., Valihrach L., Langerova L., Rohlova E., Kubista M., Marycz K. Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome. Cells. 2019;8:80. doi: 10.3390/cells8020080. PubMed DOI PMC

Smieszek A., Tomaszewski K.A., Kornicka K., Marycz K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J. Clin. Med. 2018;7:482. doi: 10.3390/jcm7120482. PubMed DOI PMC

Zimoch-Korzycka A., Śmieszek A., Jarmoluk A., Nowak U., Marycz K. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges-Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells. Polymers. 2016;8:320. doi: 10.3390/polym8090320. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Jensen E.C. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat. Rec. Hoboken. 2013;296:378–381. doi: 10.1002/ar.22641. PubMed DOI

Śmieszek A., Stręk Z., Kornicka K., Grzesiak J., Weiss C., Marycz K. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels-An Ex Vivo Study. Int. J. Mol. Sci. 2017;18:872. doi: 10.3390/ijms18040872. PubMed DOI PMC

Śmieszek A., Szydlarska J., Mucha A., Chrapiec M., Marycz K. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. J. Biomater. Appl. 2017;32:570–586. doi: 10.1177/0885328217738006. PubMed DOI

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Smieszek A., Marycz K., Szustakiewicz K., Kryszak B., Targonska S., Zawisza K., Watras A., Wiglusz R.J. New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity. Mater. Sci. Eng. C. 2019;98:213–226. PubMed

Marycz K., Weiss C., Śmieszek A., Kornicka K. Evaluation of Oxidative Stress and Mitophagy during Adipogenic Differentiation of Adipose-Derived Stem Cells Isolated from Equine Metabolic Syndrome (EMS) Horses. Stem Cells Int. 2018;2018:1–18. doi: 10.1155/2018/5340756. PubMed DOI PMC

Marycz K., Sobierajska P., Smieszek A., Maredziak M., Wiglusz K., Wiglusz R.J. Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li+, Eu3+ application in theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;78:151–162. doi: 10.1016/j.msec.2017.04.041. PubMed DOI

Jeon J., Lee M.S., Yang H.S. Differentiated osteoblasts derived decellularized extracellular matrix to promote osteogenic differentiation. Biomater. Res. 2018;22:4. doi: 10.1186/s40824-018-0115-0. PubMed DOI PMC

Zhu S., Ehnert S., Rouß M., Häussling V., Aspera-Werz R.H., Chen T., Nussler A.K. From the Clinical Problem to the Basic Research—Co-Culture Models of Osteoblasts and Osteoclasts. Int. J. Mol. Sci. 2018;19:2284. doi: 10.3390/ijms19082284. PubMed DOI PMC

Janardhanan S., Wang M.O., Fisher J.P. Coculture Strategies in Bone Tissue Engineering: The Impact of Culture Conditions on Pluripotent Stem Cell Populations. Tissue Eng. Part B Rev. 2012;18:312–321. doi: 10.1089/ten.teb.2011.0681. PubMed DOI PMC

Owen R., Reilly G.C. In vitro Models of Bone Remodelling and Associated Disorders. Front. Bioeng. Biotechnol. 2018;6:134. doi: 10.3389/fbioe.2018.00134. PubMed DOI PMC

Addison W., Nelea V., Chicatun F., Chien Y., Tran-Khanh N., Buschmann M., Nazhat S., Kaartinen M., Vali H., Tecklenburg M., et al. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: An ultrastructural, compositional and comparative analysis with mouse bone. Bone. 2015;71:244–256. doi: 10.1016/j.bone.2014.11.003. PubMed DOI PMC

Peng J., Huang N., Huang S., Li L., Ling Z., Jin S., Huang A., Lin K., Zou X. Effect of miR-21 down-regulated by H2O2 on osteogenic differentiation of MC3T3-E1 cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32:276–284. PubMed PMC

Chai X., Zhang W., Chang B., Feng X., Song J., Li L., Yu C., Zhao J., Si H. GPR39 agonist TC-G 1008 promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Artif. Cells Nanomed. Biotechnol. 2019;47:3569–3576. doi: 10.1080/21691401.2019.1649270. PubMed DOI

Liu L., Wang D., Qin Y., Xu M., Zhou L., Xu W., Liu X., Ye L., Yue S., Zheng Q., et al. Astragalin Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Bone Formation in vivo. Front. Endocrinol. Lausanne. 2019;10:228. doi: 10.3389/fendo.2019.00228. PubMed DOI PMC

Sterner R.M., Kremer K.N., Dudakovic A., Westendorf J.J., van Wijnen A.J., Hedin K.E. Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast–Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. J. Immunol. 2018;201:1086–1096. doi: 10.4049/jimmunol.1800174. PubMed DOI PMC

Chen X., Wang Z., Duan N., Zhu G., Schwarz E.M., Xie C. Osteoblast-osteoclast interactions. Connect. Tissue Res. 2018;59:99–107. doi: 10.1080/03008207.2017.1290085. PubMed DOI PMC

Boskey A.L., Spevak L., Paschalis E., Doty S.B., McKee M.D. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif. Tissue Int. 2002;71:145–154. doi: 10.1007/s00223-001-1121-z. PubMed DOI

Holm E., Gleberzon J.S., Liao Y., Sørensen E.S., Beier F., Hunter G.K., Goldberg H.A. Osteopontin mediates mineralization and not osteogenic cell development in vitro. Biochem. J. 2014;464:355–364. doi: 10.1042/BJ20140702. PubMed DOI

Rittling S.R., Matsumoto H.N., Mckee M.D., Nanci A., An X.-R., Novick K.E., Kowalski A.J., Noda M., Denhardt D.T. Mice Lacking Osteopontin Show Normal Development and Bone Structure but Display Altered Osteoclast Formation In Vitro. J. Bone Mineral. Res. 1998;13:1101–1111. doi: 10.1359/jbmr.1998.13.7.1101. PubMed DOI

Denhardt D.T., Guo X. Osteopontin: A protein with diverse functions. FASEB J. 1993;7:1475–1482. doi: 10.1096/fasebj.7.15.8262332. PubMed DOI

Pregizer S., Baniwal S.K., Yan X., Borok Z., Frenkel B. Progressive recruitment of Runx2 to genomic targets despite decreasing expression during osteoblast differentiation. J. Cell Biochem. 2008;105:965–970. doi: 10.1002/jcb.21900. PubMed DOI PMC

Bruderer M., Richards R.G., Alini M., Stoddart M.J. Role and regulation of RUNX2 in osteogenesis. Eur. Cell Mater. 2014;28:269–286. doi: 10.22203/eCM.v028a19. PubMed DOI

Xu J., Li Z., Hou Y., Fang W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am. J. Transl. Res. 2015;7:2527–2535. PubMed PMC

O’Brien C.A. Control of RANKL Gene Expression. Bone. 2010;46:911–919. doi: 10.1016/j.bone.2009.08.050. PubMed DOI PMC

Pitari M.R., Rossi M., Amodio N., Botta C., Morelli E., Federico C., Gullà A., Caracciolo D., Di Martino M.T., Arbitrio M., et al. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6:27343–27358. doi: 10.18632/oncotarget.4398. PubMed DOI PMC

Sutherland K.A., Rogers H.L., Tosh D., Rogers M.J. RANKL increases the level of Mcl-1 in osteoclasts and reduces bisphosphonate-induced osteoclast apoptosis in vitro. Arthritis Res. Ther. 2009;11:R58. doi: 10.1186/ar2681. PubMed DOI PMC

Hu C.-H., Sui B.-D., Du F.-Y., Shuai Y., Zheng C.-X., Zhao P., Yu X.-R., Jin Y. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci. Rep. 2017;7:1–14. doi: 10.1038/srep43191. PubMed DOI PMC

Luukkonen J., Hilli M., Nakamura M., Ritamo I., Valmu L., Kauppinen K., Tuukkanen J., Lehenkari P. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem. Cell Biol. 2019;151:475–487. doi: 10.1007/s00418-019-01770-y. PubMed DOI PMC

Ek-Rylander B., Andersson G. Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp. Cell Res. 2010;316:443–451. doi: 10.1016/j.yexcr.2009.10.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...