• This record comes from PubMed

Cytogenetics of entelegyne spiders (Arachnida, Araneae) from southern Africa

. 2020 ; 14 (1) : 107-138. [epub] 20200304

Status PubMed-not-MEDLINE Language English Country Bulgaria Media electronic-ecollection

Document type Journal Article

Spiders represent one of the most studied arachnid orders. They are particularly intriguing from a cytogenetic point of view, due to their complex and dynamic sex chromosome determination systems. Despite intensive research on this group, cytogenetic data from African spiders are still mostly lacking. In this study, we describe the karyotypes of 38 species of spiders belonging to 16 entelegyne families from South Africa and Namibia. In the majority of analysed families, the observed chromosome numbers and morphology (mainly acrocentric) did not deviate from the family-level cytogenetic characteristics based on material from other continents: Tetragnathidae (2n♂ = 24), Ctenidae and Oxyopidae (2n♂ = 28), Sparassidae (2n♂ = 42), Gnaphosidae, Trachelidae and Trochanteriidae (2n♂ = 22), and Salticidae (2n♂ = 28). On the other hand, we identified interspecific variability within Hersiliidae (2n♂ = 33 and 35), Oecobiidae (2n♂ = 19 and 25), Selenopidae (2n♂ = 26 and 29) and Theridiidae (2n♂ = 21 and 22). We examined the karyotypes of Ammoxenidae and Gallieniellidae for the first time. Their diploid counts (2n♂ = 22) correspond to the superfamily Gnaphosoidea and support their placement in this lineage. On the other hand, the karyotypes of Prodidominae (2n♂ = 28 and 29) contrast with all other Gnaphosoidea. Similarly, the unusually high diploid number in Borboropactus sp. (2n♂ = 28) within the otherwise cytogenetically uniform family Thomisidae (mainly 2n♂ = 21-24) supports molecular data suggesting a basal position of the genus in the family. The implementation of FISH methods for visualisation of rDNA clusters facilitated the detection of complex dynamics of numbers of these loci. We identified up to five loci of the 18S rDNA clusters in our samples. Three different sex chromosome systems (X0, X1X20 and X1X2X30) were also detected among the studied taxa.

See more in PubMed

Araujo D, Oliveira EG, Giroti AM, Mattos VF, Paula-Neto E, Brescovit AD, Schneider MC, Cella DM. (2014) Comparative cytogenetics of seven Ctenidae species (Araneae). Zoological Science 31(2): 83–88. 10.2108/zsj.31.83 PubMed DOI

Araujo D, Schneider MC, Paula-Neto E, Cella DM. (2012) Sex chromosomes and meiosis in spiders: a review. In: Swan A. (Ed.) Meiosis – Molecular Mechanisms and Cytogenetic Diversity.InTech, Croatia, Rijeka, 87–108. 10.5772/31612 DOI

Araujo D, Schneider MC, Paula-Neto E, Cella DM. (2019) The spider cytogenetic database. www.arthropodacytogenetics.bio.br/spiderdatabase [accessed 18.November 2019]

Avilés L, Varas C, Dyreson E. (1999) Does the African social spider Stegodyphus dumicola control the sex of individual offspring? Behavioral Ecology and Sociobiology 46: 237–243. 10.1007/s002650050615 DOI

Azevedo GHF, Griswold CE, Santos AJ. (2018) Systematics and evolution of ground spiders revisited (Araneae, Dionycha, Gnaphosidae). Cladistics 34(6): 579–626. 10.1111/cla.12226 PubMed DOI

Benjamin SP, Dimitrov D, Gillespie RG, Hormiga G. (2008) Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics 24(5): 708–722. 10.1111/j.1096-0031.2008.00202.x DOI

Beron P. (2018) Zoogeography of Arachnida Monographiae Biologicae. Volume 94. Springer Nature. Cham, 987 pp. 10.1007/978-3-319-74418-6 DOI

Bole-Gowda BN. (1950) The chromosome study in the spermatogenesis of two lynx-spiders (Oxyopidae). Proceedings of the Zoological Society of Bengal 3(2): 95–107.

Bole-Gowda BN. (1952) Studies on the chromosomes and the sex-determining mechanism in four hunting spiders (Sparassidae). Proceedings of the Zoological Society of Bengal 5(1): 51–70.

Bole-Gowda BN. (1958) A study of the chromosomes during meiosis in twenty-two species of Indian spiders. Proceedings of the Zoological Society of Bengal 11(2): 69–108.

Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology 24: 1765–1771. 10.1016/j.cub.2014.06.034 PubMed DOI

Chen SH. (1999) Cytological studies on six species of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zoological Studies 38(4): 423–434.

Coddington J, Giribet G, Harvey M, Prendini L, Walter D. (2004) Arachnida. In: Cracraft J, Donoghue MJ. (Eds) Assembling the tree of life.Oxford University Press, New York, 296–318.

Datta SN, Chatterjee K. (1983) Chromosome number and sex-determining system in fifty-two species of spiders from North-East India. Chromosome Information Service 35: 6–8.

Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Griswold CE, Scharff N, Hormiga G. (2017) Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics 33(3): 221–250. 10.1111/cla.12165 PubMed DOI

Dippenaar-Schoeman AS, Haddad CR, Foord SH, Lyle R, Lotz LN, Helberg L, Mathebula S, Van den Berg A, Marais P, Van den Berg AM, Van Niekerk E, Jocqué R. (2010) First Atlas of the Spiders of South Africa (Arachnida: Araneae). ARC – Plant Protection Research Institute, Pretoria, 1158 pp.

Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J. (2011) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). European Journal of Entomology 108: 1–16. 10.14411/eje.2011.001 DOI

Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, Hormiga G. (2018) Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology 28(9): 1489–1497. 10.1016/j.cub.2018.03.064 PubMed DOI

Forman M, Nguyen P, Hula V, Král J. (2013) Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenetic and Genome Research 141(1): 43–49. 10.1159/000351041 PubMed DOI

Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Bond JE. (2016) Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4: e1719. 10.7717/peerj.1719 PubMed DOI PMC

Gorlov IP, Gorlova OYU, Logunov DV. (1995) Cytogenetic studies on Siberian spiders. Hereditas 122(3): 211–220. 10.1111/j.1601-5223.1995.00211.x DOI

Griswold CE, Ramírez MJ, Coddington JA, Platnick NI. (2005) Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences 56: 1–324.

Hackman W. (1948) Chromosomenstudien an Araneen mit besonderer berücksichtigung der geschlechtschromosomen. Acta Zoologica Fennica 54: 1–101.

Jocqué R, Dippenaar-Schoeman AS. (2006) Spider families of the world. Royal Museum for Central Africa, Tervuren, 336 pp.

Kořínková T, Král J. (2013) Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W. (Ed.) Spider Ecophysiology.Springer-Verlag, Berlin, 159–171. 10.1007/978-3-642-33989-9_12 DOI

Král J, Forman M, Kořínková T, Reyes Lerma AC, Haddad CR, Musilová J, Řezáč M, Avila Herrera IM, Thakur S, Dippennar-Schoeman AS, Marec F, Horová L, Bureš P. (2019) Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Scientific Reports 9: 3001. 10.1038/s41598-019-39034-3 PubMed DOI PMC

Král J, Musilová J, Šťáhlavský F, Řezáč M, Akan Z, Edwards RL, Coyle FA, Almerje CR. (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. 10.1007/s10577-006-1095-9 PubMed DOI

Král J, Kořínková T, Forman M, Krkavcová L. (2011) Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenetic and Genome Research 133: 43–66. 10.1159/000323497 PubMed DOI

Král J, Kořínková T, Krkavcová L, Musilová J, Forman M, Ávila Herrera IM, Haddad CR, Vítková M, Henriques S, Palacios Vargas JG, Hedin M. (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109(2): 377–408. 10.1111/bij.12056 DOI

Kumar SA, Venu G, Jayaprakash G, Venkatachalaiah G. (2017) Studies on chromosomal characteristics of Ctenus indicus (Gravely 1931) (Araneae: Ctenidae). Nucleus 60(1): 17–23. 10.1007/s13237-016-0191-2 DOI

Kumbıçak U, Kumbıçak Z, Huseynli G. (2018) A new diploid number and sex chromosome system for the family Hersiliidae from the Mediterranean Region of Turkey. Pakistan Journal of Zoology 50(1): 131–134. 10.17582/journal.pjz/2018.50.1.131.134 DOI

Kumbıçak Z. (2014) Cytogenetic characterization of ten araneomorph spiders (Araneae): karyotypes and meiotic features. Biologia (Bratislava) 69(5): 644–650. 10.2478/s11756-014-0350-3 DOI

Kumbıçak Z, Ekiz E, Çiçekli S. (2014) Karyotypes of six spider species belonging to the families Gnaphosidae, Salticidae, Thomisidae, and Zodariidae (Araneae) from Turkey. Comparative Cytogenetics 8(2): 93–101. 10.3897/compcytogen.v8i2.6065 PubMed DOI PMC

Levan A, Fredga K, Sandberg AA. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI

Lotz LN, Dippenaar-Schoeman AS. (1999) Cheiramiona, a new Afrotropical spider genus (Araneae: Miturgidae: Eutichurinae). Navorsinge van die Nasionale Museum Bloemfontein 15(2): 29–44.

Maddison WP, Leduc-Robert G. (2013) Multiple origins of sex chromosome fusions correlated with chiasma localization in Habronattus jumping spiders (Araneae: Salticidae). Evolution 67(8): 2258–2272. 10.1111/evo.12109 PubMed DOI PMC

Miller JA, Carmichael A, Ramírez MJ, Spagna JC, Haddad CR, Řezáč M, Griswold CE. (2010) Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution 55(3): 786–804. 10.1016/j.ympev.2010.02.021 PubMed DOI

Mittal OP. (1966) Karyological studies on Indian spiders IV. Chromosomes in relation to taxonomy in Eusparassidae, Selenopidae and Thomisidae. Genetica 37(1): 205–234. 10.1007/BF01547134 DOI

Mittal OP. (1983) Karyological studies on the Indian spiders X. An XXX0-type of sex-determining mechanism in the cribellate spiders. La Kromosomo II(30–31): 919–925.

Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos F, Habel J. (Eds) Biodiversity Hotspots.Springer, Berlin, Heidelberg, 3–22. 10.1007/978-3-642-20992-5_1 DOI

Noss RF, Platt WJ, Sorrie BA, Weakley AS, Means DB, Costanza J, Peet RK. (2015) How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions 21(2): 236–244. 10.1111/ddi.12278 DOI

Ono H, Ogata K. (2018) Spiders of Japan: their natural history and diversity. Tokai University Press, Kanagawa, 713 pp.

Parida BB, Sharma NN. (1987) Chromosome number, sex mechanism and genome size in 27 species of Indian spiders. Chromosome Information Service 43: 11–13.

Polotow D, Carmichael A, Griswold CE. (2015) Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). Invertebrate Systematics 29(2): 124–163. 10.1071/IS14041 DOI

Prakash A, Prakash S. (2014) Cytogenetical investigations on spiders of semi-arid areas. Indian Journal of Arachnology 3(2): 40–54.

Ramírez MJ. (2014) The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bullletin of the American Museum of Natural History 390: 1–374. 10.1206/821.1 DOI

Rincão MP, Chavari JL, Brescovit AD, Dias AL. (2017) Cytogenetic analysis of five Ctenidae species (Araneae): detection of heterochromatin and 18S rDNA sites. Comparative Cytogenetics 11(4): 627–639. 10.3897/CompCytogen.v11i4.10620 PubMed DOI PMC

Rowell DM. (1985) Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma 93(2): 169–176. 10.1007/BF00293165 DOI

Sakamoto Y, Zacaro AA. (2009) LEVAN, an ImageJ plugin for morphological cytogenetic analysis of mitotic and meiotic chromosomes. Initial version. http://rsbweb.nih.gov/ij/

Schubert I, Lysak MA. (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27(6): 207–216. 10.1016/j.tig.2011.03.004 PubMed DOI

Sharma NN, Parida BB. (1987) Study of chromosomes in spiders from Orissa. Pranikee 8: 71–76.

Sharma GP, Jande SS, Tandon KK. (1959) Cytological studies on the Indian spiders IV. Chromosome complement and meiosis in Selenops radiatus Latreille (Selenopidae) and Leucauge decorata (Blackwall) (Tetragnathidae) with special reference to XXX0-type of male sex determining mechanism. Research Bulletin (N.S. ) of the Panjab University 10(1): 73–80.

Sharp HE, Rowell DM. (2007) Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: structural heterozygosity in an Australian spider. Journal of Evolutionary Biology 20(6): 2427–2439. 10.1111/j.1420-9101.2007.01395.x PubMed DOI

Srivastava MDL, Shukla S. (1986) Chromosome number and sex-determining mechanism in forty-seven species of Indian spiders. Chromosome Information Service 41: 23–26.

Šťáhlavský F, Král J. (2004) Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140: 49–60. 10.1111/j.1601-5223.2004.01783.x PubMed DOI

Šťáhlavský F, Král J, Harvey MS, Haddad CR. (2006) A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones). European Journal of Entomology 103(2): 277–289. 10.14411/eje.2006.036 DOI

Šťáhlavský F, Král J, Harvey MS, Haddad CR. (2012) The first cytogenetic characterisation of atemnids: pseudoscorpions with the highest chromosome numbers (Arachnida: Pseudoscorpiones). Cytogenetic and Genome Research 137: 22–30. 10.1159/000339516 PubMed DOI

Šťáhlavský F, Štundlová J, Lowe G, Stockmann M, Kovařík F. (2018a) Application of cytogenetic markers in the taxonomy of flat rock scorpions (Scorpiones: Hormuridae), with the description of Hadogenes weygoldti sp. n. Zoologischer Anzeiger 273: 173–182. 10.1016/j.jcz.2018.01.007 DOI

Šťáhlavský F, Opatova V, Just P, Lotz LN, Haddad CR. (2018b) Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. Comparative Cytogenetics 12: 41–59. 10.3897/compcytogen.v12i1.21744 PubMed DOI PMC

Stávale LM, Schneider MC, Araujo D, Brescovit AD, Cella DM. (2010) Chromosomes of Theridiidae spiders (Entelegynae): interspecific karyotype diversity in Argyrodes and diploid number intraspecific variability in Nesticodes rufipes. Genetics and Molecular Biology 33(4): 663–668. 10.1590/S1415-47572010005000076 PubMed DOI PMC

Stávale LM, Schneider MC, Brescovit AD, Cella DM. (2011) Chromosomal characteristics and karyotype evolution of Oxyopidae spiders (Araneae, Entelegynae). Genetics and Molecular Research 10(2): 752–763. 10.4238/vol10-2gmr1084 PubMed DOI

Suzuki S. (1950) Sex determination and karyotypes in spiders. Zoological Magazine 59: 31–32.

Suzuki S. (1952) Cytological studies in spiders II. Chromosomal investigation in twenty two species of spiders belonging to the four families, Clubionidae, Sparassidae, Thomisidae and Oxyopidae, which constitute Clubionoidea, with special reference to sex chromosomes. Journal of Science of the Hiroshima University. Series B. Division 1 13: 1–52.

Suzuki S. (1954) Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. Journal of Science of the Hiroshima University. Series B. Division 1 15(2): 23–136.

Suzuki G, Kubota S. (2011) 5S ribosomal DNA cluster of a lynx spider Oxyopes sertatus includes a histone H2B-like gene in the spacer region (NTS). Chromosome Science 14(1+2): 3–8. 10.11352/scr.14.3 DOI

Svojanovská H, Nguyen P, Hiřman M, Tuf IH, Wahab RA, Haddad CR, Šťáhlavský F. (2016) Karyotype evolution in harvestmen of the suborder Cyphophthalmi (Opiliones). Cytogenetic and Genome Research 148: 227–236. 10.1159/000445863 PubMed DOI

Traut W. (1976) Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58: 275–284. 10.1007/BF00292094 PubMed DOI

Vítková M, Král J, Traut W, Zrzavý J, Marec F. (2005) The evolutionary origin of insect telomeric repeats, (TTAGG) n. Chromosome Research 13(2): 145–156. 10.1007/s10577-005-7721-0 PubMed DOI

Wesołowska W, Haddad CR. (2018) Further additions to the jumping spider fauna of South Africa (Araneae: Salticidae). Annales Zoologici (Warszawa) 68: 879–908. 10.3161/00034541ANZ2018.68.4.011 DOI

Wheeler WH, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, Almeida-Silva LM, Álvarez-Padilla F, Arnedo MA, Benavides LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin M, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnick NI, Polotow D, Silva-Dávila D, Scharff N, Szűts T, Ubick D, Vink CJ, Wood HM, Zhang JX. (2016) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33: 574–616. 10.1111/cla.12182 PubMed DOI

White MJ. (1976) Animal Cytogenetics. Vol. 3: Insecta 2: Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera. Berlin, 75 pp.

World Spider Catalog (2019) World Spider Catalog. Version 20.0. Natural History Museum Bern. 10.24436/2 DOI

Wunderlich J. (2004) The new spider (Araneae) family Borboropactidae from the tropics and fossil in Baltic amber. Beiträge zur Araneologie 3: 1737–1746.

Youju W, Daxiang S, Xiuzhen W, Zhenling Y. (1993) Preliminary studies on the chromosome of four species of spiders. Acta Arachnologica Sinica 2(2): 110–113.

Zhao Y, Ayoub NA, Hayashi CY. (2010) Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae). PLoS ONE 5(9): e12804. 10.1371/journal.pone.0012804 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...