Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM124215
NIGMS NIH HHS - United States
U.1275.01.005.00001.01
Medical Research Council - United Kingdom
K22 HG000044
NHGRI NIH HHS - United States
T32 GM007276
NIGMS NIH HHS - United States
R01 MH115080
NIMH NIH HHS - United States
T32 HG000044
NHGRI NIH HHS - United States
R01 GM102484
NIGMS NIH HHS - United States
PubMed
32221286
PubMed Central
PMC7101428
DOI
10.1038/s41467-020-15435-1
PII: 10.1038/s41467-020-15435-1
Knihovny.cz E-zdroje
- MeSH
- adenosindeaminasa chemie genetika MeSH
- adenosinmonofosfát metabolismus MeSH
- bodová mutace genetika MeSH
- degenerace nervu patologie MeSH
- Drosophila melanogaster genetika imunologie MeSH
- editace RNA genetika MeSH
- katalýza MeSH
- lokomoce MeSH
- messenger RNA genetika metabolismus MeSH
- mozek metabolismus MeSH
- přirozená imunita genetika MeSH
- proteinové domény MeSH
- proteiny Drosophily chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- ribonukleasa III metabolismus MeSH
- RNA-helikasy metabolismus MeSH
- stárnutí patologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- Adar protein, Drosophila MeSH Prohlížeč
- adenosindeaminasa MeSH
- adenosinmonofosfát MeSH
- DCR-2 protein, Drosophila MeSH Prohlížeč
- messenger RNA MeSH
- proteiny Drosophily MeSH
- ribonukleasa III MeSH
- RNA-helikasy MeSH
ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.
Central European Institute of Technology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Sinigaglia K, et al. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim Biophys. Acta Gene Regul. Mech. 2019;1862:356–369. doi: 10.1016/j.bbagrm.2018.10.011. PubMed DOI
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 2010;79:321–349. doi: 10.1146/annurev-biochem-060208-105251. PubMed DOI PMC
Bazak L, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24:365–376. doi: 10.1101/gr.164749.113. PubMed DOI PMC
Ramaswami G, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods. 2013;10:128–132. doi: 10.1038/nmeth.2330. PubMed DOI PMC
Tan MH, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550:249–254. doi: 10.1038/nature24041. PubMed DOI PMC
Graveley BR, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471:473–479. doi: 10.1038/nature09715. PubMed DOI PMC
Sapiro AL, et al. Illuminating spatial A-to-I RNA editing signatures within the Drosophila brain. Proc. Natl Acad. Sci. 2019;116:2318–2327. doi: 10.1073/pnas.1811768116. PubMed DOI PMC
St Laurent G, et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat. Struct. Mol. Biol. 2013;20:1333–1339. doi: 10.1038/nsmb.2675. PubMed DOI
Heale BS, et al. Editing independent effects of ADARs on the miRNA/siRNA pathways. Embo J. 2009;28:3145–3156. doi: 10.1038/emboj.2009.244. PubMed DOI PMC
Kallman AM, Sahlin M, Ohman M. ADAR2 A–>I editing: site selectivity and editing efficiency are separate events. Nucleic Acids Res. 2003;31:4874–4881. doi: 10.1093/nar/gkg681. PubMed DOI PMC
Nishikura K, Sakurai M, Ariyoshi K, Ota H. Antagonistic and stimulative roles of ADAR1 in RNA silencing. RNA Biol. 2013;10:1240–1247. doi: 10.4161/rna.25947. PubMed DOI PMC
Vesely C, Tauber S, Sedlazeck FJ, von Haeseler A, Jantsch MF. Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res. 2012;22:1468–1476. doi: 10.1101/gr.133025.111. PubMed DOI PMC
Vesely C, et al. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Res. 2014;42:12155–12168. doi: 10.1093/nar/gku844. PubMed DOI PMC
Ota H, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013;153:575–589. doi: 10.1016/j.cell.2013.03.024. PubMed DOI PMC
Gallo A, Vukic D, Michalik D, O’Connell MA, Keegan LP. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 2017;136:1265–1278. doi: 10.1007/s00439-017-1837-0. PubMed DOI
Walkley CR, Li JB. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017;18:205. doi: 10.1186/s13059-017-1347-3. PubMed DOI PMC
Liddicoat BJ, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–1120. doi: 10.1126/science.aac7049. PubMed DOI PMC
Mannion NM, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. PubMed DOI PMC
Pestal K, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity. 2015;43:933–944. doi: 10.1016/j.immuni.2015.11.001. PubMed DOI PMC
Higuchi M, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406:78–81. doi: 10.1038/35017558. PubMed DOI
Krestel HE, et al. A genetic switch for epilepsy in adult mice. J. Neurosci. 2004;24:10568–10578. doi: 10.1523/JNEUROSCI.4579-03.2004. PubMed DOI PMC
Keegan LP, et al. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res. 2011;39:7249–7262. doi: 10.1093/nar/gkr423. PubMed DOI PMC
Keegan L, Khan A, Vukic D, O’Connell M. ADAR RNA editing below the backbone. Rna. 2017;23:1317–1328. doi: 10.1261/rna.060921.117. PubMed DOI PMC
Palladino MJ, Keegan LP, O’Connell MA, Reenan RA. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell. 2000;102:437–449. doi: 10.1016/S0092-8674(00)00049-0. PubMed DOI
Robinson, J., Paluch, J., Dickman, D. & Joiner, W. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat. Commun.7, 10512 (2016). PubMed PMC
Luo D, Kohlway A, Pyle AM. Duplex RNA activated ATPases (DRAs) platforms for RNA sensing, signaling and processing. RNA Biol. 2013;10:111–120. doi: 10.4161/rna.22706. PubMed DOI PMC
Jepson JE, et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 2011;286:8325–8337. doi: 10.1074/jbc.M110.186817. PubMed DOI PMC
Zhang R, Deng P, Jacobson D, Li JB. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing. PLoS Genet. 2017;13:e1006563. doi: 10.1371/journal.pgen.1006563. PubMed DOI PMC
Benzer S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl Acad. Sci. USA. 1967;58:1112–1119. doi: 10.1073/pnas.58.3.1112. PubMed DOI PMC
Keegan LP, et al. Tuning of RNA editing by ADAR is required in Drosophila. Embo J. 2005;24:2183–2193. doi: 10.1038/sj.emboj.7600691. PubMed DOI PMC
Palladino MJ, Keegan LP, O’Connell MA, Reenan RA. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA. 2000;6:1004–1018. doi: 10.1017/S1355838200000248. PubMed DOI PMC
Matthews MM, et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 2016;23:426–433. doi: 10.1038/nsmb.3203. PubMed DOI PMC
Savva, Y. A. et al. Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nat. Commun.3, 10.1038/ncomms1789 (2012). PubMed PMC
Cho DS, et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 2003;278:17093–17102. doi: 10.1074/jbc.M213127200. PubMed DOI
Gallo A, Keegan LP, Ring GM, O’Connell MA. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. Embo J. 2003;22:3421–3430. doi: 10.1093/emboj/cdg327. PubMed DOI PMC
Deddouche S, et al. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat. Immunol. 2008;9:1425–1432. doi: 10.1038/ni.1664. PubMed DOI
Paradkar PN, Trinidad L, Voysey R, Duchemin J-B, Walker PJ. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc. Natl Acad. Sci. 2012;109:18915–18920. doi: 10.1073/pnas.1205231109. PubMed DOI PMC
Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat. Immunol. 2006;7:590–597. doi: 10.1038/ni1335. PubMed DOI
Lee YS, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117:69–81. doi: 10.1016/S0092-8674(04)00261-2. PubMed DOI
Paradkar PN, Duchemin J-B, Voysey R, Walker PJ. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Neglected Tropical Dis. 2014;8:e2823. doi: 10.1371/journal.pntd.0002823. PubMed DOI PMC
Maldonado C, Alicea D, Gonzalez M, Bykhovskaia M, Marie B. Adar is essential for optimal presynaptic function. Mol. Cell. Neurosci. 2013;52:173–180. doi: 10.1016/j.mcn.2012.10.009. PubMed DOI PMC
Rice GI, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 2012;44:1243–1248. doi: 10.1038/ng.2414. PubMed DOI PMC
Livingston JH, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med Genet. 2014;51:76–82. doi: 10.1136/jmedgenet-2013-102038. PubMed DOI
Vitali P, Scadden AD. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 2010;17:1043–1050. doi: 10.1038/nsmb.1864. PubMed DOI PMC
Scadden AD, Smith CW. Specific cleavage of hyper-edited dsRNAs. Embo J. 2001;20:4243–4252. doi: 10.1093/emboj/20.15.4243. PubMed DOI PMC
Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol. 2015;13:54. doi: 10.1186/s12915-015-0166-9. PubMed DOI PMC
Rawling DC, Fitzgerald ME, Pyle AM. Establishing the role of ATP for the function of the RIG-I innate immune sensor. Elife. 2015;4:e09391. doi: 10.7554/eLife.09391. PubMed DOI PMC
Anchisi S, Guerra J, Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. MBio. 2015;6:e02349–02314. doi: 10.1128/mBio.02349-14. PubMed DOI PMC
Lawlor KT, et al. Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Hum. Mol. Genet. 2011;20:3757–3768. doi: 10.1093/hmg/ddr292. PubMed DOI
Khan A, et al. Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy. BMC Biol. 2020;18:15. doi: 10.1186/s12915-020-0747-0. PubMed DOI PMC
Kehl, S. R. et al. TAK1 converts Sequestosome 1/p62 from an autophagy receptor to a signaling platform. EMBO reports20 (2019). PubMed PMC
Gurung, S., Evans, A. J., Wilkinson, K. A. & Henley, J. ADAR2 mediated Q/R editing of GluK2 regulates homeostatic plasticity of kainate receptors. bioRxiv, 10.1101/308650 (2018). PubMed
Penn AC, Balik A, Greger IH. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system. Front Neurosci. 2013;7:61. doi: 10.3389/fnins.2013.00061. PubMed DOI PMC
Ren X, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc. Natl Acad. Sci. USA. 2013;110:19012–19017. doi: 10.1073/pnas.1318481110. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22:2008–2017. doi: 10.1101/gr.133744.111. PubMed DOI PMC
Reyes A, et al. Drift and conservation of differential exon usage across tissues in primate species. Proc. Natl Acad. Sci. USA. 2013;110:15377–15382. doi: 10.1073/pnas.1307202110. PubMed DOI PMC
Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous
ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations