Itch and Cough - Similar Role of Sensory Nerves in Their Pathogenesis

. 2020 Mar 27 ; 69 (Suppl 1) : S43-S54.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32228011

Itch is the most common chief complaint in patients visiting dermatology clinics and is analogous to cough and also sneeze of the lower and upper respiratory tract, all three of which are host actions trying to clear noxious stimuli. The pathomechanisms of these symptoms are not completely determined. The itch can originate from a variety of etiologies. Itch originates following the activation of peripheral sensory nerve endings following damage or exposure to inflammatory mediators. More than one sensory nerve subtype is thought to subservepruriceptive itch which includes both unmyelinated C-fibers and thinly myelinated Adelta nerve fibers. There are a lot of mediators capable of stimulating these afferent nerves leading to itch. Cough and itch pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. The inflammation is involved in the development of chronic conditions of itch and cough. The aim of this review is to point out the role of sensory nerves in the pathogenesis of cough and itching. The common aspects of itch and cough could lead to new thoughts and perspectives in both fields.

Zobrazit více v PubMed

ABDULQAWI R, DOCKRY R, HOLT K, LAYTON G, McCARTHY BG, FORD AP, SMITH JA. P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2015;385:1198–1205. doi: 10.1016/S0140-6736(14)61255-1. PubMed DOI

ALEMI F, KWON E, POOLE DP, LIEU T, LYO V, CATTARUZZA F, CEVIKBAS F, STEINHOFF M, NASSINI R, MATERAZZI S, GUERRERO-ALBA R, VALDEZ-MORALES E, COTTRELL GS, SCHOONJANS K, GEPPETTI P, VANNER SJ, BUNNETT NW, CORVERA CU. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest. 2013;123:1513–1530. doi: 10.1172/JCI64551. PubMed DOI PMC

BAUTISTA DM, WILSON SR, HOON MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci. 2014;17:175–82. doi: 10.1038/nn.3619. PubMed DOI PMC

BIRRELL MA, BELVISI MG, GRACE M, SADOFSKY L, FARUQI S, HELE DJ, MAHER SA, FREUND-MICHEL V, MORICE AH. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med. 2009;180:1042–1047. doi: 10.1164/rccm.200905-0665OC. PubMed DOI PMC

BIRRING SS, PARKER D, BRIGHTLING CE, BRADDING P, WARDLAW AJ, PAVORD ID. Induced sputum inflammatory mediator concentrations in chronic cough. Am J Respir Crit Care Med. 2004;169:15–19. doi: 10.1164/rccm.200308-1092OC. PubMed DOI

BONVINI SJ, BELVISI MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther. 2017;47:21–28. doi: 10.1016/j.pupt.2017.06.009. PubMed DOI

CAMPOS-BEDOLLA P, DE-LA-CRUZ-NEGRETE R, VARGAS MH, TORREJÓN-GONZÁLEZ E, MEJÍA-MENDOZA D, ISLAS-HERNÁNDEZ A, SEGURA-MEDINA P, CÓRDOBA-RODRÍGUEZ G, OROZCO-SUÁREZ S, ARREOLA-RAMÍREZ JL. Allergic sensitization increases contractile responses to 5-HT in guinea pig aorta. Physiol Res. 2020;69:191–197. doi: 10.33549/physiolres.934128. PubMed DOI PMC

CANNING BJ, MAZZONE SB, MEEKER SN, MORI N, REYNOLDS SM, UNDEM BJ. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol. 2004;557:543–558. doi: 10.1113/jphysiol.2003.057885. PubMed DOI PMC

CASTRO J, HARRINGTON AM, LIEU T, GARCIA-CARABALLO S, MADDERN J, SCHOBER G, O’DONNELL T, GRUNDY L, LUMSDEN AL, MILLER PE, GHETTI A, STEINHOFF MS, POOLE DP, DONG X, CHANG L, BUNNETT NW, BRIERLEY SM. Activation of pruritogenic TGR5, MRGPRA3, and MRGPRC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight. 2019;4(20) doi: 10.1172/jci.insight.131712. pii: 131712. PubMed DOI PMC

CATERINA MJ, SCHUMACHER MA, TOMINAGA M, ROSEN TA, LEVINE JD, JULIUS D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. PubMed DOI

CHUAYCHOO B, LEE MG, KOLLARIK M, UNDEM BJ. Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther. 2005;18:269–276. doi: 10.1016/j.pupt.2004.12.010. PubMed DOI

COLERIDGE HM, COLERIDGE JC. Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol. 1977;29:125–142. doi: 10.1016/0034-5687(77)90086-X. PubMed DOI

COLERIDGE JC, COLERIDGE HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol. 1984;99:1–110. doi: 10.1007/BFb0027715. PubMed DOI

COLERIDGE HM, COLERIDGE JC, BAKER DG, GINZEL KH, MORRISON MA. Comparison of the effects of histamine and prostaglandin on afferent C-fiber endings and irritant receptors in the intrapulmonary airways. Adv Exp Med Biol. 1978;99:291–305. doi: 10.1007/978-1-4613-4009-6_32. PubMed DOI

COLERIDGE HM, COLERIDGE JC, SCHULTZ HD. Afferent pathways involved in reflex regulation of airway smooth muscle. Pharmacol Ther. 1989;42:1–63. doi: 10.1016/0163-7258(89)90021-1. PubMed DOI

DHAND A, AMINOFF MJ. The neurology of itch. Brain. 2014;137:313–322. doi: 10.1093/brain/awt158. PubMed DOI

DICPINIGAITIS PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:169S–173S. doi: 10.1378/chest.129.1_suppl.169S. PubMed DOI

DIEHN F, TEFFERI A. Pruritus in polycythaemia vera: prevalence, laboratory correlates and management. Br J Haematol. 2001;115:619–621. doi: 10.1046/j.1365-2141.2001.03161.x. PubMed DOI

FOX AJ, LALLOO UG, BELVISI MG, BERNAREGGI M, CHUNG KF, BARNES PJ. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat Med. 1996;2:814–817. doi: 10.1038/nm0796-814. PubMed DOI

GOUIN O, L’HERONDELLE K, LEBONVALLET N, LE GALL-IANOTTO C, SAKKA M, BUHÉ V, PLÉE-GAUTIER E, CARRÉ JL, LEFEUVRE L, MISERY L, Le GARREC R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8:644–661. doi: 10.1007/s13238-017-0395-5. PubMed DOI PMC

GRACE M, BIRRELL MA, DUBUIS E, MAHER SA, BELVISI MG. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax. 2012;67:891–900. doi: 10.1136/thoraxjnl-2011-201443. PubMed DOI PMC

GRONEBERG DA, NIIMI A, DINH QT, COSIO B, HEW M, FISCHER A, CHUNG KF. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med. 2004;170:1276–1280. doi: 10.1164/rccm.200402-174OC. PubMed DOI

HACHISUKA J, FURUE H, FURUE M, YOSHIMURA M. Responsiveness of C neurons in rat dorsal root ganglion to 5-hydroxytryptamine-induced pruritic stimuli in vivo. J Neurophysiol. 2010;104:271–279. doi: 10.1152/jn.00938.2009. PubMed DOI PMC

HOLZER P. Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol. 1998;30:5–11. doi: 10.1016/S0306-3623(97)00078-5. PubMed DOI

HOSOGI M, SCHMELZ M, MIYACHI Y, IKOMA A. Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain. 2006;126:16–23. doi: 10.1016/j.pain.2006.06.003. PubMed DOI

IGNJATOVIC T, TAN F, BROVKOVYCH V, SKIDGEL RA, ERDÖS EG. Novel mode of action of angiotensin I converting enzyme inhibitors: direct activation of bradykinin B1 receptor. J Biol Chem. 2002;277:16847–16852. doi: 10.1074/jbc.M200355200. PubMed DOI

JAQUEMAR D, SCHENKER T, TRUEB B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 1999;274:7325–7333. doi: 10.1074/jbc.274.11.7325. PubMed DOI

KÁDKOVÁ A, SYNYTSYA V, KRUSEK J, ZÍMOVÁ L, VLACHOVÁ V. Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol Res. 2017;66:425–439. doi: 10.33549/physiolres.933553. PubMed DOI

KOLLARIK M, UNDEM BJ. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol. 2002;543:591–600. doi: 10.1113/jphysiol.2002.022848. PubMed DOI PMC

LALLOO UG, FOX AJ, BELVISI MG, CHUNG KF, BARNES PJ. Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol. 1995;79:1082–1087. doi: 10.1152/jappl.1995.79.4.1082. PubMed DOI

LAMOTTE RH, DONG X, RINGKAMP M. Sensory neurons and circuits mediating itch. Nat Rev Neurosci. 2014;15:19–31. doi: 10.1038/nrn3641. PubMed DOI PMC

LAUDE EA, HIGGINS KS, MORICE AH. A comparative study of the effects of citric acid, capsaicin and resiniferatoxin on the cough challenge in guinea-pig and man. Pulm Pharmacol. 1993;6:171–175. doi: 10.1006/pulp.1993.1023. PubMed DOI

LAVINKA PC, DONG X. Molecular signaling and targets from itch: lessons for cough. Cough. 2013;9:8. doi: 10.1186/1745-9974-9-8. PubMed DOI PMC

LEE LY, PISARRI TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001;125:47–65. doi: 10.1016/S0034-5687(00)00204-8. PubMed DOI

LEE LY, YU J. Sensory nerves in lung and airways. Compr Physiol. 2014;4:287–324. doi: 10.1002/cphy.c130020. PubMed DOI

LEE MG, KOLLARIK M, CHUAYCHOO B, UNDEM BJ. Ionotropic and metabotropic receptor mediated airway sensory nerve activation. Pulm Pharmacol Ther. 2004;17:355–360. doi: 10.1016/j.pupt.2004.09.025. PubMed DOI

LIU J, YU J. Spectrum of myelinated pulmonary afferents (II) Am J Physiol Regul Integr Comp Physiol. 2013;305:1059–1064. doi: 10.1152/ajpregu.00125.2013. PubMed DOI PMC

LUO J, FENG J, LIU S, WALTERS ET, HU H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci. 2015;72:3201–3223. doi: 10.1007/s00018-015-1904-4. PubMed DOI PMC

MAZZONE SB, UNDEM BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016;96:975–1024. doi: 10.1152/physrev.00039.2015. PubMed DOI PMC

MAZZONE SB, REYNOLDS SM, MORI N, KOLLARIK M, FARMER DG, MYERS AC, CANNING BJ. Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci. 2009;29:13662–13671. doi: 10.1523/JNEUROSCI.4354-08.2009. PubMed DOI PMC

McGARVEY LP, FORSYTHE P, HEANEY LG, MacMAHON J, ENNIS M. Bronchoalveolar lavage findings in patients with chronic nonproductive cough. Eur Respir J. 1999;13:59–65. doi: 10.1183/09031936.99.13105999. PubMed DOI

McGLONE F, REILLY D. The cutaneous sensory system. Neurosci Biobehav Rev. 2010;34:148–159. doi: 10.1016/j.neubiorev.2009.08.004. PubMed DOI

MUKAE S, AOKI S, ITOH S, IWATA T, UEDA H, KATAGIRI T. Bradykinin B(2) receptor gene polymorphism is associated with angiotensin-converting enzyme inhibitor-related cough. Hypertension. 2000;36:127–131. doi: 10.1161/01.HYP.36.1.127. PubMed DOI

NASSENSTEIN C, KWONG K, TAYLOR-CLARK T, KOLLARIK M, MacGLASHAN DM, BRAUN A, UNDEM BJ. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586:1595–1604. doi: 10.1113/jphysiol.2007.148379. PubMed DOI PMC

MORICE AH. TRPA1 receptors in chronic cough. Pulm Pharmacol Ther. 2017;47:42–44. doi: 10.1016/j.pupt.2017.05.004. PubMed DOI

MYERS AC, KAJEKAR R, UNDEM BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol. 2002;282:775–781. doi: 10.1152/ajplung.00353.2001. PubMed DOI

NASSENSTEIN C, KWONG K, TAYLOR-CLARK T, KOLLARIK M, MACGLASHAN DM, BRAUN A, UNDEM BJ. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586:1595–1604. doi: 10.1113/jphysiol.2007.148379. PubMed DOI PMC

NASSENSTEIN C, TAYLOR-CLARK TE, MYERS AC, RU F, NANDIGAMA R, BETTNER W, UNDEM BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol. 2010;588:4769–4783. doi: 10.1113/jphysiol.2010.195339. PubMed DOI PMC

OETJEN LK, KIM BS. Interactions of the immune and sensory nervous systems in atopy. FEBS J. 2018;285:3138–3151. doi: 10.1111/febs.14465. PubMed DOI PMC

OETJEN LK, MACK MR, FENG J, WHELAN TM, NIU H, GUO CJ, CHEN S, TRIER AM, XU AZ, TRIPATHI SV, LUO J, GAO X, YANG L, HAMILTON SL, WANG PL, BRESTOFF JR, COUNCIL ML, BRASINGTON R, SCHAFFER A, BROMBACHER F, HSIEH CS, GEREAU RW, 4TH, MILLER MJ, CHEN ZF, HU H, DAVIDSON S, LIU Q, KIM BS. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171:217–228. doi: 10.1016/j.cell.2017.08.006. PubMed DOI PMC

PAINTAL AS. Mechanism of stimulation of type J pulmonary receptors. J Physiol. 1969;203:511–532. doi: 10.1113/jphysiol.1969.sp008877. PubMed DOI PMC

PATEL KN, LIU Q, MEEKER S, UNDEM BJ, DONG X. Pirt, a TRPV1 modulator, is required for histamine-dependent and -independent itch. PLoS One. 2011;6:e20559. doi: 10.1371/journal.pone.0020559. PubMed DOI PMC

POTENZIERI C, UNDEM BJ. Basic mechanisms of itch. Clin Exp Allergy. 2012;42:8–19. doi: 10.1111/j.1365-2222.2011.03791.x. PubMed DOI PMC

POTENZIERI C, MEEKER S, UNDEM BJ. Activation of mouse bronchopulmonary C-fibres by serotonin and allergen-ovalbumin challenge. J Physiol. 2012;590:5449–5459. doi: 10.1113/jphysiol.2012.237115. PubMed DOI PMC

RICCIO MM, MYERS AC, UNDEM BJ. Immunomodulation of afferent neurons in guinea-pig isolated airway. J Physiol. 1996;491:499–509. doi: 10.1113/jphysiol.1996.sp021234. PubMed DOI PMC

RICCO MM, KUMMER W, BIGLARI B, MYERS AC, UNDEM BJ. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol. 1996;496:521–530. doi: 10.1113/jphysiol.1996.sp021703. PubMed DOI PMC

RINGKAMP M, SCHEPERS RJ, SHIMADA SG, JOHANEK LM, HARTKE TV, BORZAN J, SHIM B, LAMOTTE RH, MEYER RA. A role for nociceptive, myelinated nerve fibers in itch sensation. J Neurosci. 2011;31:14841–14849. doi: 10.1523/JNEUROSCI.3005-11.2011. PubMed DOI PMC

ROBINSON RK, BIRRELL MA, ADCOCK JJ, WORTLEY MA, DUBUIS ED, CHEN S, McGILVERY CM, HU S, SHAFFER MSP, BONVINI SJ, MAHER SA, MUDWAY IS, PORTER AE, CARLSTEN C, TETLEY TD, BELVISI MG. Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol. 2018;141:1074–1084. doi: 10.1016/j.jaci.2017.04.038. PubMed DOI PMC

SANDERS KM, FAST K, YOSIPOVITCH G. Why we scratch: Function and dysfunction. Exp Dermatol. 2019;28:1482–1484. doi: 10.1111/exd.13977. PubMed DOI

SANT’AMBROGIO G. Nervous receptors of the tracheobronchial tree. Annu Rev Physiol. 1987;49:611–627. doi: 10.1146/annurev.ph.49.030187.003143. PubMed DOI

SCHELEGLE ES. Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec A Discov Mol Cell Evol Biol. 2003;270:11–16. doi: 10.1002/ar.a.10004. PubMed DOI

SHELLEY WB, ARTHUR RP. The neurohistology and neurophysiology of the itch sensation in man. AMA Arch Derm. 1957;76:296–323. doi: 10.1001/archderm.1957.01550210020004. PubMed DOI

SCHMELZ M, SCHMIDT R, BICKEL A, HANDWERKER HO, TOREBJORK HE. Specific C-receptors for itch in human skin. J Neurosci. 1997;17:8003–8008. doi: 10.1523/JNEUROSCI.17-20-08003.1997. PubMed DOI PMC

SCHMELZ M, SCHMIDT R, WEIDNER C, HILLIGES M, TOREBJORK HE, HANDWERKER HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89:2441–2448. doi: 10.1152/jn.01139.2002. PubMed DOI

SIKAND P, SHIMADA SG, GREEN BG, LAMOTTE RH. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain. 2009;144:66–75. doi: 10.1016/j.pain.2009.03.001. PubMed DOI PMC

SMITH J, ALLMAN D, BADRI H, MILLER R, MORRIS J, SATIA I, WOOD A, TROWER M. The neurokinin-1 receptor antagonist orvepitant is a novel antitussive therapy for chronic refractory cough: results from a phase 2 pilot study (VOLCANO-1) Chest. 2019 doi: 10.1016/j.chest.2019.08.001. pii: S0012-3692(19)31451-5. PubMed DOI

STÄNDER S, YOSIPOVITCH G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br J Dermatol. doi: 10.1111/bjd.18025. [Epub ahead of print] PubMed DOI

STEINHOFF M, NEISIUS U, IKOMA A, FARTASCH M, HEYER G, SKOV PS, LUGER TA, SCHMELZ M. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–6180. doi: 10.1523/JNEUROSCI.23-15-06176.2003. PubMed DOI PMC

STORY GM, PEIER AM, REEVE AJ, EID SR, MOSBACHER J, HRICIK TR, EARLEY TJ, HERGARDEN AC, ANDERSSON DA, HWANG SW, MCINTYRE P, JEGLA T, BEVAN S, PATAPOUTIAN A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. doi: 10.1016/S0092-8674(03)00158-2. PubMed DOI

SURDENIKOVA L, RU F, NASSENSTEIN C, TATAR M, KOLLARIK M. The neural crest- and placodes-derived afferent innervation of the mouse esophagus. Neurogastroenterol Motil. 2012;24:517–525. doi: 10.1111/nmo.12002. PubMed DOI

TALAGAS M, MISERY L. Role of keratinocytes in sensitive skin. Front Med (Lausanne) 2019;6:108. doi: 10.3389/fmed.2019.00108. PubMed DOI PMC

TAYLOR-CLARK TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium. 2016;60:155–162. doi: 10.1016/j.ceca.2016.03.007. PubMed DOI PMC

THURMOND RL, KAZEROUNI K, CHAPLAN SR, GREENSPAN AJ. Antihistamines and itch. Handb Exp Pharmacol. 2015;226:257–290. doi: 10.1007/978-3-662-44605-8_15. PubMed DOI

TOBIN D, NABARRO G, BAART De La FAILLE H, Van VLOTEN WA, Van Der PUTTE SC, SCHUURMAN HJ. Increased number of immunoreactive nerve fibers in atopic dermatitis. J Allergy Clin Immunol. 1992;90:613–622. doi: 10.1016/0091-6749(92)90134-N. PubMed DOI

VALTCHEVA MV, SAMINENI VK, GOLDEN JP, GEREAU RW, 4TH, DAVIDSON S. Enhanced nonpeptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch. J Pain. 2015;16:346–356. doi: 10.1016/j.jpain.2015.01.005. PubMed DOI PMC

VOISIN T, BOUVIER A, CHIU IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29:247–261. doi: 10.1093/intimm/dxx040. PubMed DOI PMC

WALLENGREN J. Neuroanatomy and neurophysiology of itch. Dermatol Ther. 2005;18:292–303. doi: 10.1111/j.1529-8019.2005.00041.x. PubMed DOI

WATANABE N, HORIE S, MICHAEL GJ, KEIR S, SPINA D, PAGE CP, PRIESTLEY JV. Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience. 2006;141:1533–1543. doi: 10.1016/j.neuroscience.2006.04.073. PubMed DOI

WEIGAND LA, MYERS AC, MEEKER S, UNDEM BJ. Mast cell-cholinergic nerve interaction in mouse airways. J Physiol. 2009;587:3355–3362. doi: 10.1113/jphysiol.2009.173054. PubMed DOI PMC

WEST PW, CANNING BJ, MERLO-PICH E, WOODCOCK AA, SMITH JA. Morphologic characterization of nerves in whole-mount airway biopsies. Am J Respir Crit Care Med. 2015;192:30–39. doi: 10.1164/rccm.201412-2293OC. PubMed DOI PMC

WIDDICOMBE J. Airway receptors. Respir Physiol. 2001;125:3–15. doi: 10.1016/S0034-5687(00)00201-2. PubMed DOI

WORTLEY MA, DUBUIS E, BONVINI SJ, WONG S, SHALA F, MAHER SA, ADCOCK JJ, SMITH JA, BIRRELL MA, BELVISI MG. Making sense of sensory nerves: An in vitro characterisation of gene expression profiles of airway-innervating guinea-pig airway neurons using single-cell analysis. Am J Respir Crit Care Med. 2016;193:A6002.

XANDER C, MEERPOHL JJ, GALANDI D, BUROH S, SCHWARZER G, ANTES G, BECKER G. Pharmacological interventions for pruritus in adult palliative care patients. Cochrane Database Syst Rev. 2013;6:CD008320. doi: 10.1002/14651858.CD008320.pub2. PubMed DOI

YAMAGUCHI T, NAGASAWA T, SATOH M, KURAISHI Y. Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci Res. 1999;35:77–83. doi: 10.1016/S0168-0102(99)00070-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...