Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Postdoctoral Fellowships, travel grant
Fonds Wetenschappelijk Onderzoek
17-00885S
Czech science foundation
J.K.K.
Deutsche Forschungsgemeinschaft
A.G.S.
BOF (Bijzonder Onzderzoeksfonds) of Ghent University, Belgium
PubMed
32230810
PubMed Central
PMC7177887
DOI
10.3390/ijms21072315
PII: ijms21072315
Knihovny.cz E-zdroje
- Klíčová slova
- composite, enzyme, gellan gum, mineralization, polyphenol, protein-polyphenol interaction,
- MeSH
- alkalická fosfatasa metabolismus MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální polysacharidy MeSH
- biokompatibilní materiály MeSH
- biomimetika metody MeSH
- fosforečnany vápenaté MeSH
- fyziologická kalcifikace účinky léků MeSH
- hydrogely chemie MeSH
- hydrolyzovatelné taniny metabolismus farmakologie MeSH
- lidé MeSH
- Mangifera chemie MeSH
- minerály chemie MeSH
- osteoblasty metabolismus MeSH
- polyfenoly chemie MeSH
- polysacharidy chemie MeSH
- regenerace kostí MeSH
- rostlinné extrakty chemie MeSH
- rostliny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- antibakteriální látky MeSH
- bakteriální polysacharidy MeSH
- biokompatibilní materiály MeSH
- calcium phosphate MeSH Prohlížeč
- fosforečnany vápenaté MeSH
- gellan gum MeSH Prohlížeč
- hydrogely MeSH
- hydrolyzovatelné taniny MeSH
- Mangifera indica extract MeSH Prohlížeč
- minerály MeSH
- pentagalloylglucose MeSH Prohlížeč
- polyfenoly MeSH
- polysacharidy MeSH
- rostlinné extrakty MeSH
Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.
Centre for Nano and Biophotonics Ghent University 9000 Ghent Belgium
Department of Chemistry Ghent University Krijgslaan 281 9000 Ghent Belgium
Department of Genetics and Microbiology Charles University Prague 116 36 Prague Czech Republic
Department of Nutritional and Food Sciences University of Bonn D 53012 Bonn Germany
Division of Food Technology Kiel University 24118 Kiel Germany
Engineering Department Lancaster University Gillow Avenue Lancaster LA1 4YW UK
FSRC Crystallography and photonics RAS 119333 Moscow Russia
Materials Science Institute Lancaster University Lancaster LA1 4YW UK
Zobrazit více v PubMed
Gkioni K., Leeuwenburgh S.C., Douglas T.E., Mikos A.G., Jansen J.A. Mineralization of hydrogels for bone regeneration. Tissue Eng. Part. B Rev. 2010;16:577–585. doi: 10.1089/ten.teb.2010.0462. PubMed DOI
Douglas T., Wlodarczyk M., Pamula E., Declercq H., de Mulder E., Bucko M., Balcaen L., Vanhaecke F., Cornelissen R., Dubruel P., et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med. 2014;8:906–918. doi: 10.1002/term.1616. PubMed DOI
Dragusin D.M., Giol D.E., Vasile E., Zecheru T., Stancu I.C. Caesin – phema: In vitro formation of nanometric ca-p nuclei. Dig. J. Nanomater. Biostructures. 2011;6:1909–1918.
Shkilnyy A., Graf R., Hiebl B., Neffe A.T., Friedrich A., Hartmann J., Taubert A. Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites. Macromol Biosci. 2009;9:179–186. doi: 10.1002/mabi.200800266. PubMed DOI
De Jonge L.T., Leeuwenburgh S.C.G., van den Beucken J.J.J.P., Wolke J.G.C., Jansen J.A. Electrosprayed Enzyme Coatings as Bioinspired Alternatives to Bioceramic Coatings for Orthopedic and Oral Implants. Adv. Funct. Mater. 2009;19:755–762. doi: 10.1002/adfm.200800819. DOI
Saveleva M.S., Eftekhari K., Abalymov A., Douglas T.E.L., Volodkin D., Parakhonskiy B.V., Skirtach A.G. Hierarchy of Hybrid Materials-The Place of Inorganics-in-Organics in it, Their Composition and Applications. Front. Chem. 2019;7:179. doi: 10.3389/fchem.2019.00179. PubMed DOI PMC
Asenath-Smith E., Li H., Keene E.C., Seh Z.W., Estroff L.A. Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Adv. Funct. Mater. 2012;22:2891–2914. doi: 10.1002/adfm.201200300. DOI
Kong H.J., Kaigler D., Kim K., Mooney D.J. Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules. 2004;5:1720–1727. doi: 10.1021/bm049879r. PubMed DOI
Jerca F.A., Anghelache A.M., Ghibu E., Cecoltan S., Stancu I.-C., Trusca R., Vasile E., Teodorescu M., Vuluga D.M., Hoogenboom R., et al. Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chem. Mater. 2018;30:7938–7949. doi: 10.1021/acs.chemmater.8b03545. DOI
Xu X., Jerca F.A., Jerca V.V., Hoogenboom R. Covalent Poly(2-Isopropenyl-2-Oxazoline) Hydrogels with Ultrahigh Mechanical Strength and Toughness through Secondary Terpyridine Metal-Coordination Crosslinks. Adv. Funct. Mater. 2019;29:1904886. doi: 10.1002/adfm.201904886. DOI
Xu X., Jerca F.A., Van Hecke K., Jerca V.V., Hoogenboom R. High compression strength single network hydrogels with pillar[5]arene junction points. Mater. Horiz. 2020;7:566. doi: 10.1039/C9MH01401B. DOI
Chin K.Y., Ima-Nirwana S. Olives and Bone: A Green Osteoporosis Prevention Option. Int. J. Environ. Res. Public Health. 2016;13:755. doi: 10.3390/ijerph13080755. PubMed DOI PMC
Arjmandi B.H., Johnson S.A., Pourafshar S., Navaei N., George K.S., Hooshmand S., Chai S.C., Akhavan N.S. Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms. Nutrients. 2017;9:496. doi: 10.3390/nu9050496. PubMed DOI PMC
Cazzola M., Ferraris S., Prenesti E., Casalegno V., Spriano S. Grafting of Gallic Acid onto a Bioactive Ti6Al4V Alloy: A Physico-Chemical Characterization. Coatings. 2019;9:302. doi: 10.3390/coatings9050302. DOI
Lišková J., Douglas T.E., Beranová J., Skwarczyńska A., Božič M., Samal S.K., Modrzejewska Z., Gorgieva S., Kokol V., Bačáková L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr. Polym. 2015;129:135–142. doi: 10.1016/j.carbpol.2015.04.043. PubMed DOI
Douglas T.E., Dokupil A., Reczynska K., Brackman G., Krok-Borkowicz M., Keppler J.K., Bozic M., Van Der Voort P., Pietryga K., Samal S.K., et al. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich ecklonia cava extract seanol((r)) to endow antibacterial properties and promote mineralization. Biomed. Mater. 2016;11:045015. doi: 10.1088/1748-6041/11/4/045015. PubMed DOI
Cheynier V., Tomas-Barberan F.A., Yoshida K. Polyphenols: From plants to a variety of food and nonfood uses. J. Agric. Food Chem. 2015;63:7589–7594. doi: 10.1021/acs.jafc.5b01173. PubMed DOI
Murdiati T.B., Mcsweeney C.S., Lowry J.B. Complexing of toxic hydrolyzable tannins of yellow-wood (terminalia-oblongata) and harendong (clidemia-hirta) with reactive substances—An approach to preventing toxicity. J. Appl. Toxicol. 1991;11:333–338. doi: 10.1002/jat.2550110506. PubMed DOI
Niemetz R., Gross G.G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry. 2005;66:2001–2011. doi: 10.1016/j.phytochem.2005.01.009. PubMed DOI
Engels C., Ganzle M.G., Schieber A. Fractionation of gallotannins from mango (mangifera indica l.) kernels by high-speed counter-current chromatography and determination of their antibacterial activity. J. Agric. Food Chem. 2010;58:775–780. doi: 10.1021/jf903252t. PubMed DOI
Isenburg J.C., Simionescu D.T., Starcher B.C., Vyavahare N.R. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation. 2007;115:1729–1737. doi: 10.1161/CIRCULATIONAHA.106.672873. PubMed DOI
Isenburg J.C., Simionescu D.T., Vyavahare N.R. Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials. 2004;25:3293–3302. doi: 10.1016/j.biomaterials.2003.10.001. PubMed DOI
Karadeniz F., Ahn B.N., Kim J.A., Seo Y., Jang M.S., Nam K.H., Kim M., Lee S.H., Kong C.S. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch. Pharm. Res. 2015;38:2172–2182. doi: 10.1007/s12272-015-0637-0. PubMed DOI
Wang X., Zhai W., Wu C., Ma B., Zhang J., Zhang H., Zhu Z., Chang J. Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties. Acta Biomater. 2015;16:81–93. doi: 10.1016/j.actbio.2015.01.028. PubMed DOI
Carson M., Keppler J.K., Brackman G., Dawood D., Vandrovcova M., Fawzy El-Sayed K., Coenye T., Schwarz K., Clarke S.A., Skirtach A.G., et al. Whey Protein Complexes with Green Tea Polyphenols: Antimicrobial, Osteoblast-Stimulatory, and Antioxidant Activities. Cells Tissues Organs. 2018;206:106–118. doi: 10.1159/000494732. PubMed DOI
Coppo E., Marchese A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 2014;15:380–390. doi: 10.2174/138920101504140825121142. PubMed DOI
Ghisaidoobe A.B., Chung S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on forster resonance energy transfer techniques. Int. J. Mol. Sci. 2014;15:22518–22538. doi: 10.3390/ijms151222518. PubMed DOI PMC
Keppler J.K., Stuhldreier M.C., Temps F., Schwarz K. Influence of mathematical models and correction factors on binding results of polyphenols and retinol with beta-lactoglobulin measured with fluorescence quenching. Food Biophys. 2014;9:158–168. doi: 10.1007/s11483-013-9328-x. DOI
Andrews J.J., Forster L.S. Protein difference spectra. Effect of solvent and charge on tryptophan. Biochemistry. 1972;11:1875–1879. doi: 10.1021/bi00760a023. PubMed DOI
Vivian J.T., Callis P.R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001;80:2093–2109. doi: 10.1016/S0006-3495(01)76183-8. PubMed DOI PMC
Keppler J.K., Sonnichsen F.D., Lorenzen P.C., Schwarz K. Differences in heat stability and ligand binding among beta-lactoglobulin genetic variants a, b and c using h-1 h-nmr and fluorescence quenching. Biochim. Et Biophys. Acta-Proteins Proteom. 2014;1844:1083–1093. doi: 10.1016/j.bbapap.2014.02.007. PubMed DOI
Keppler J.K., Martin D., Garamus V.M., Schwarz K. Differences in binding behavior of (-)-epigallocatechin gallate to -lactoglobulin heterodimers (ab) compared to homodimers (a) and (b) J. Mol. Recognit. 2015;28:656–666. doi: 10.1002/jmr.2480. PubMed DOI
Dobreva M.A., Frazier R.A., Mueller-Harvey I., Clifton L.A., Gea A., Green R.J. Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules. 2011;12:710–715. doi: 10.1021/bm101341s. PubMed DOI
Frazier R.A., Deaville E.R., Green R.J., Stringano E., Willoughby I., Plant J., Mueller-Harvey I. Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal. 2010;51:490–495. doi: 10.1016/j.jpba.2009.05.035. PubMed DOI
Tang H.R., Covington A.D., Hancock R.A. Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers. 2003;70:403–413. doi: 10.1002/bip.10499. PubMed DOI
Goncalves R., Mateus N., Pianet I., Laguerre M., de Freitas V. Mechanisms of tannin-induced trypsin inhibition: A molecular approach. Langmuir. 2011;27:13122–13129. doi: 10.1021/la202280c. PubMed DOI
Da Violante G., Zerrouk N., Richard I., Provot G., Chaumeil J.C., Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (dmso) on caco2/tc7 colon tumor cell cultures. Biol. Pharm. Bull. 2002;25:1600–1603. doi: 10.1248/bpb.25.1600. PubMed DOI
Verdanova M., Pytlik R., Kalbacova M.H. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv. Biobank. 2014;12:99–105. doi: 10.1089/bio.2013.0078. PubMed DOI PMC
Sawai M., Takase K., Teraoka H., Tsukada K. Reversible G1 arrest in the cell cycle of human lymphoid cell lines by dimethyl sulfoxide. Exp. Cell Res. 1990;187:4–10. doi: 10.1016/0014-4827(90)90108-M. PubMed DOI
Maeno S., Niki Y., Matsumoto H., Morioka H., Yatabe T., Funayama A., Toyama Y., Taguchi T., Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3d culture. Biomaterials. 2005;26:4847–4855. doi: 10.1016/j.biomaterials.2005.01.006. PubMed DOI
Guth K., Campion C., Buckland T., Hing K.A. Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. J. Mater. Sci. Mater. Med. 2011;22:2155–2164. doi: 10.1007/s10856-011-4409-1. PubMed DOI
Schumacher M., Lode A., Helth A., Gelinsky M. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. 2013;9:9547–9557. doi: 10.1016/j.actbio.2013.07.027. PubMed DOI
Douglas T.E., Krawczyk G., Pamula E., Declercq H.A., Schaubroeck D., Bucko M.M., Balcaen L., Van Der Voort P., Bliznuk V., van den Vreken N.M., et al. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. J. Tissue Eng. Regen. Med. 2016;10:938–954. doi: 10.1002/term.1875. PubMed DOI
Gonzalez-Sarrias A., Yuan T., Seeram N.P. Cytotoxicity and structure activity relationship studies of maplexins a-i, gallotannins from red maple (acer rubrum) Food Chem. Toxicol. 2012;50:1369–1376. doi: 10.1016/j.fct.2012.02.031. PubMed DOI
Han H.J., Kwon H.Y., Sohn E.J., Ko H., Kim B., Jung K., Lew J.H., Kim S.H. Suppression of e-cadherin mediates gallotannin induced apoptosis in hep g2 hepatocelluar carcinoma cells. Int. J. Biol. Sci. 2014;10:490–499. doi: 10.7150/ijbs.7495. PubMed DOI PMC
Park E., Kwon H.Y., Jung J.H., Jung D.B., Jeong A., Cheon J., Kim B., Kim S.H. Inhibition of myeloid cell leukemia 1 and activation of caspases are critically involved in gallotannin-induced apoptosis in prostate cancer cells. Phytother Res. 2015;29:1225–1236. doi: 10.1002/ptr.5371. PubMed DOI
Kwon H.Y., Kim J.H., Kim B., Srivastava S.K., Kim S.H. Regulation of sirt1/ampk axis is critically involved in gallotannin-induced senescence and impaired autophagy leading to cell death in hepatocellular carcinoma cells. Arch. Toxicol. 2017;92:241–257. doi: 10.1007/s00204-017-2021-y. PubMed DOI
Inoue M., Suzuki R., Sakaguchi N., Li Z., Takeda T., Ogihara Y., Jiang B.Y., Chen Y. Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 1995;18:1526–1530. doi: 10.1248/bpb.18.1526. PubMed DOI
Sakaguchi N., Inoue M., Isuzugawa K., Ogihara Y., Hosaka K. Cell death-inducing activity by gallic acid derivatives. Biol. Pharm. Bull. 1999;22:471–475. doi: 10.1248/bpb.22.471. PubMed DOI
Sakagami H., Jiang Y., Kusama K., Atsumi T., Ueha T., Toguchi M., Iwakura I., Satoh K., Ito H., Hatano T., et al. Cytotoxic activity of hydrolyzable tannins against human oral tumor cell lines—A possible mechanism. Phytomedicine. 2000;7:39–47. doi: 10.1016/S0944-7113(00)80020-3. PubMed DOI
Engels C., Knodler M., Zhao Y.Y., Carle R., Ganzle M.G., Schieber A. Antimicrobial activity of gallotannins isolated from mango (mangifera indica l.) kernels. J. Agric. Food Chem. 2009;57:7712–7718. doi: 10.1021/jf901621m. PubMed DOI
Gassling V., Douglas T.E., Purcz N., Schaubroeck D., Balcaen L., Bliznuk V., Declercq H.A., Vanhaecke F., Dubruel P. Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applications. Biomed. Mater. 2013;8:055001. doi: 10.1088/1748-6041/8/5/055001. PubMed DOI
Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural f, oh, and cl apatites. Am. Mineral. 1989;74:870–876.
Douglas T.E., Lapa A., Reczynska K., Krok-Borkowicz M., Pietryga K., Samal S.K., Declercq H.A., Schaubroeck D., Boone M., Van der Voort P., et al. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomed. Mater. 2016;11:065011. doi: 10.1088/1748-6041/11/6/065011. PubMed DOI