Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins

. 2020 Mar 27 ; 21 (7) : . [epub] 20200327

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32230810

Grantová podpora
Postdoctoral Fellowships, travel grant Fonds Wetenschappelijk Onderzoek
17-00885S Czech science foundation
J.K.K. Deutsche Forschungsgemeinschaft
A.G.S. BOF (Bijzonder Onzderzoeksfonds) of Ghent University, Belgium

Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.

Zobrazit více v PubMed

Gkioni K., Leeuwenburgh S.C., Douglas T.E., Mikos A.G., Jansen J.A. Mineralization of hydrogels for bone regeneration. Tissue Eng. Part. B Rev. 2010;16:577–585. doi: 10.1089/ten.teb.2010.0462. PubMed DOI

Douglas T., Wlodarczyk M., Pamula E., Declercq H., de Mulder E., Bucko M., Balcaen L., Vanhaecke F., Cornelissen R., Dubruel P., et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med. 2014;8:906–918. doi: 10.1002/term.1616. PubMed DOI

Dragusin D.M., Giol D.E., Vasile E., Zecheru T., Stancu I.C. Caesin – phema: In vitro formation of nanometric ca-p nuclei. Dig. J. Nanomater. Biostructures. 2011;6:1909–1918.

Shkilnyy A., Graf R., Hiebl B., Neffe A.T., Friedrich A., Hartmann J., Taubert A. Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites. Macromol Biosci. 2009;9:179–186. doi: 10.1002/mabi.200800266. PubMed DOI

De Jonge L.T., Leeuwenburgh S.C.G., van den Beucken J.J.J.P., Wolke J.G.C., Jansen J.A. Electrosprayed Enzyme Coatings as Bioinspired Alternatives to Bioceramic Coatings for Orthopedic and Oral Implants. Adv. Funct. Mater. 2009;19:755–762. doi: 10.1002/adfm.200800819. DOI

Saveleva M.S., Eftekhari K., Abalymov A., Douglas T.E.L., Volodkin D., Parakhonskiy B.V., Skirtach A.G. Hierarchy of Hybrid Materials-The Place of Inorganics-in-Organics in it, Their Composition and Applications. Front. Chem. 2019;7:179. doi: 10.3389/fchem.2019.00179. PubMed DOI PMC

Asenath-Smith E., Li H., Keene E.C., Seh Z.W., Estroff L.A. Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Adv. Funct. Mater. 2012;22:2891–2914. doi: 10.1002/adfm.201200300. DOI

Kong H.J., Kaigler D., Kim K., Mooney D.J. Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules. 2004;5:1720–1727. doi: 10.1021/bm049879r. PubMed DOI

Jerca F.A., Anghelache A.M., Ghibu E., Cecoltan S., Stancu I.-C., Trusca R., Vasile E., Teodorescu M., Vuluga D.M., Hoogenboom R., et al. Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chem. Mater. 2018;30:7938–7949. doi: 10.1021/acs.chemmater.8b03545. DOI

Xu X., Jerca F.A., Jerca V.V., Hoogenboom R. Covalent Poly(2-Isopropenyl-2-Oxazoline) Hydrogels with Ultrahigh Mechanical Strength and Toughness through Secondary Terpyridine Metal-Coordination Crosslinks. Adv. Funct. Mater. 2019;29:1904886. doi: 10.1002/adfm.201904886. DOI

Xu X., Jerca F.A., Van Hecke K., Jerca V.V., Hoogenboom R. High compression strength single network hydrogels with pillar[5]arene junction points. Mater. Horiz. 2020;7:566. doi: 10.1039/C9MH01401B. DOI

Chin K.Y., Ima-Nirwana S. Olives and Bone: A Green Osteoporosis Prevention Option. Int. J. Environ. Res. Public Health. 2016;13:755. doi: 10.3390/ijerph13080755. PubMed DOI PMC

Arjmandi B.H., Johnson S.A., Pourafshar S., Navaei N., George K.S., Hooshmand S., Chai S.C., Akhavan N.S. Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms. Nutrients. 2017;9:496. doi: 10.3390/nu9050496. PubMed DOI PMC

Cazzola M., Ferraris S., Prenesti E., Casalegno V., Spriano S. Grafting of Gallic Acid onto a Bioactive Ti6Al4V Alloy: A Physico-Chemical Characterization. Coatings. 2019;9:302. doi: 10.3390/coatings9050302. DOI

Lišková J., Douglas T.E., Beranová J., Skwarczyńska A., Božič M., Samal S.K., Modrzejewska Z., Gorgieva S., Kokol V., Bačáková L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr. Polym. 2015;129:135–142. doi: 10.1016/j.carbpol.2015.04.043. PubMed DOI

Douglas T.E., Dokupil A., Reczynska K., Brackman G., Krok-Borkowicz M., Keppler J.K., Bozic M., Van Der Voort P., Pietryga K., Samal S.K., et al. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich ecklonia cava extract seanol((r)) to endow antibacterial properties and promote mineralization. Biomed. Mater. 2016;11:045015. doi: 10.1088/1748-6041/11/4/045015. PubMed DOI

Cheynier V., Tomas-Barberan F.A., Yoshida K. Polyphenols: From plants to a variety of food and nonfood uses. J. Agric. Food Chem. 2015;63:7589–7594. doi: 10.1021/acs.jafc.5b01173. PubMed DOI

Murdiati T.B., Mcsweeney C.S., Lowry J.B. Complexing of toxic hydrolyzable tannins of yellow-wood (terminalia-oblongata) and harendong (clidemia-hirta) with reactive substances—An approach to preventing toxicity. J. Appl. Toxicol. 1991;11:333–338. doi: 10.1002/jat.2550110506. PubMed DOI

Niemetz R., Gross G.G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry. 2005;66:2001–2011. doi: 10.1016/j.phytochem.2005.01.009. PubMed DOI

Engels C., Ganzle M.G., Schieber A. Fractionation of gallotannins from mango (mangifera indica l.) kernels by high-speed counter-current chromatography and determination of their antibacterial activity. J. Agric. Food Chem. 2010;58:775–780. doi: 10.1021/jf903252t. PubMed DOI

Isenburg J.C., Simionescu D.T., Starcher B.C., Vyavahare N.R. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation. 2007;115:1729–1737. doi: 10.1161/CIRCULATIONAHA.106.672873. PubMed DOI

Isenburg J.C., Simionescu D.T., Vyavahare N.R. Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials. 2004;25:3293–3302. doi: 10.1016/j.biomaterials.2003.10.001. PubMed DOI

Karadeniz F., Ahn B.N., Kim J.A., Seo Y., Jang M.S., Nam K.H., Kim M., Lee S.H., Kong C.S. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch. Pharm. Res. 2015;38:2172–2182. doi: 10.1007/s12272-015-0637-0. PubMed DOI

Wang X., Zhai W., Wu C., Ma B., Zhang J., Zhang H., Zhu Z., Chang J. Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties. Acta Biomater. 2015;16:81–93. doi: 10.1016/j.actbio.2015.01.028. PubMed DOI

Carson M., Keppler J.K., Brackman G., Dawood D., Vandrovcova M., Fawzy El-Sayed K., Coenye T., Schwarz K., Clarke S.A., Skirtach A.G., et al. Whey Protein Complexes with Green Tea Polyphenols: Antimicrobial, Osteoblast-Stimulatory, and Antioxidant Activities. Cells Tissues Organs. 2018;206:106–118. doi: 10.1159/000494732. PubMed DOI

Coppo E., Marchese A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 2014;15:380–390. doi: 10.2174/138920101504140825121142. PubMed DOI

Ghisaidoobe A.B., Chung S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on forster resonance energy transfer techniques. Int. J. Mol. Sci. 2014;15:22518–22538. doi: 10.3390/ijms151222518. PubMed DOI PMC

Keppler J.K., Stuhldreier M.C., Temps F., Schwarz K. Influence of mathematical models and correction factors on binding results of polyphenols and retinol with beta-lactoglobulin measured with fluorescence quenching. Food Biophys. 2014;9:158–168. doi: 10.1007/s11483-013-9328-x. DOI

Andrews J.J., Forster L.S. Protein difference spectra. Effect of solvent and charge on tryptophan. Biochemistry. 1972;11:1875–1879. doi: 10.1021/bi00760a023. PubMed DOI

Vivian J.T., Callis P.R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001;80:2093–2109. doi: 10.1016/S0006-3495(01)76183-8. PubMed DOI PMC

Keppler J.K., Sonnichsen F.D., Lorenzen P.C., Schwarz K. Differences in heat stability and ligand binding among beta-lactoglobulin genetic variants a, b and c using h-1 h-nmr and fluorescence quenching. Biochim. Et Biophys. Acta-Proteins Proteom. 2014;1844:1083–1093. doi: 10.1016/j.bbapap.2014.02.007. PubMed DOI

Keppler J.K., Martin D., Garamus V.M., Schwarz K. Differences in binding behavior of (-)-epigallocatechin gallate to -lactoglobulin heterodimers (ab) compared to homodimers (a) and (b) J. Mol. Recognit. 2015;28:656–666. doi: 10.1002/jmr.2480. PubMed DOI

Dobreva M.A., Frazier R.A., Mueller-Harvey I., Clifton L.A., Gea A., Green R.J. Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules. 2011;12:710–715. doi: 10.1021/bm101341s. PubMed DOI

Frazier R.A., Deaville E.R., Green R.J., Stringano E., Willoughby I., Plant J., Mueller-Harvey I. Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal. 2010;51:490–495. doi: 10.1016/j.jpba.2009.05.035. PubMed DOI

Tang H.R., Covington A.D., Hancock R.A. Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers. 2003;70:403–413. doi: 10.1002/bip.10499. PubMed DOI

Goncalves R., Mateus N., Pianet I., Laguerre M., de Freitas V. Mechanisms of tannin-induced trypsin inhibition: A molecular approach. Langmuir. 2011;27:13122–13129. doi: 10.1021/la202280c. PubMed DOI

Da Violante G., Zerrouk N., Richard I., Provot G., Chaumeil J.C., Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (dmso) on caco2/tc7 colon tumor cell cultures. Biol. Pharm. Bull. 2002;25:1600–1603. doi: 10.1248/bpb.25.1600. PubMed DOI

Verdanova M., Pytlik R., Kalbacova M.H. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv. Biobank. 2014;12:99–105. doi: 10.1089/bio.2013.0078. PubMed DOI PMC

Sawai M., Takase K., Teraoka H., Tsukada K. Reversible G1 arrest in the cell cycle of human lymphoid cell lines by dimethyl sulfoxide. Exp. Cell Res. 1990;187:4–10. doi: 10.1016/0014-4827(90)90108-M. PubMed DOI

Maeno S., Niki Y., Matsumoto H., Morioka H., Yatabe T., Funayama A., Toyama Y., Taguchi T., Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3d culture. Biomaterials. 2005;26:4847–4855. doi: 10.1016/j.biomaterials.2005.01.006. PubMed DOI

Guth K., Campion C., Buckland T., Hing K.A. Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. J. Mater. Sci. Mater. Med. 2011;22:2155–2164. doi: 10.1007/s10856-011-4409-1. PubMed DOI

Schumacher M., Lode A., Helth A., Gelinsky M. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. 2013;9:9547–9557. doi: 10.1016/j.actbio.2013.07.027. PubMed DOI

Douglas T.E., Krawczyk G., Pamula E., Declercq H.A., Schaubroeck D., Bucko M.M., Balcaen L., Van Der Voort P., Bliznuk V., van den Vreken N.M., et al. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. J. Tissue Eng. Regen. Med. 2016;10:938–954. doi: 10.1002/term.1875. PubMed DOI

Gonzalez-Sarrias A., Yuan T., Seeram N.P. Cytotoxicity and structure activity relationship studies of maplexins a-i, gallotannins from red maple (acer rubrum) Food Chem. Toxicol. 2012;50:1369–1376. doi: 10.1016/j.fct.2012.02.031. PubMed DOI

Han H.J., Kwon H.Y., Sohn E.J., Ko H., Kim B., Jung K., Lew J.H., Kim S.H. Suppression of e-cadherin mediates gallotannin induced apoptosis in hep g2 hepatocelluar carcinoma cells. Int. J. Biol. Sci. 2014;10:490–499. doi: 10.7150/ijbs.7495. PubMed DOI PMC

Park E., Kwon H.Y., Jung J.H., Jung D.B., Jeong A., Cheon J., Kim B., Kim S.H. Inhibition of myeloid cell leukemia 1 and activation of caspases are critically involved in gallotannin-induced apoptosis in prostate cancer cells. Phytother Res. 2015;29:1225–1236. doi: 10.1002/ptr.5371. PubMed DOI

Kwon H.Y., Kim J.H., Kim B., Srivastava S.K., Kim S.H. Regulation of sirt1/ampk axis is critically involved in gallotannin-induced senescence and impaired autophagy leading to cell death in hepatocellular carcinoma cells. Arch. Toxicol. 2017;92:241–257. doi: 10.1007/s00204-017-2021-y. PubMed DOI

Inoue M., Suzuki R., Sakaguchi N., Li Z., Takeda T., Ogihara Y., Jiang B.Y., Chen Y. Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 1995;18:1526–1530. doi: 10.1248/bpb.18.1526. PubMed DOI

Sakaguchi N., Inoue M., Isuzugawa K., Ogihara Y., Hosaka K. Cell death-inducing activity by gallic acid derivatives. Biol. Pharm. Bull. 1999;22:471–475. doi: 10.1248/bpb.22.471. PubMed DOI

Sakagami H., Jiang Y., Kusama K., Atsumi T., Ueha T., Toguchi M., Iwakura I., Satoh K., Ito H., Hatano T., et al. Cytotoxic activity of hydrolyzable tannins against human oral tumor cell lines—A possible mechanism. Phytomedicine. 2000;7:39–47. doi: 10.1016/S0944-7113(00)80020-3. PubMed DOI

Engels C., Knodler M., Zhao Y.Y., Carle R., Ganzle M.G., Schieber A. Antimicrobial activity of gallotannins isolated from mango (mangifera indica l.) kernels. J. Agric. Food Chem. 2009;57:7712–7718. doi: 10.1021/jf901621m. PubMed DOI

Gassling V., Douglas T.E., Purcz N., Schaubroeck D., Balcaen L., Bliznuk V., Declercq H.A., Vanhaecke F., Dubruel P. Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applications. Biomed. Mater. 2013;8:055001. doi: 10.1088/1748-6041/8/5/055001. PubMed DOI

Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural f, oh, and cl apatites. Am. Mineral. 1989;74:870–876.

Douglas T.E., Lapa A., Reczynska K., Krok-Borkowicz M., Pietryga K., Samal S.K., Declercq H.A., Schaubroeck D., Boone M., Van der Voort P., et al. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomed. Mater. 2016;11:065011. doi: 10.1088/1748-6041/11/6/065011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...