Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- calanus, fatty acids, krill, mast cells, stereoisomers,
- MeSH
- Anti-Inflammatory Agents, Non-Steroidal blood pharmacokinetics MeSH
- Biological Availability MeSH
- Chemotaxis drug effects MeSH
- Docosahexaenoic Acids pharmacokinetics MeSH
- Linoleic Acids chemistry MeSH
- Fatty Acids, Omega-3 pharmacokinetics pharmacology MeSH
- Mast Cells drug effects MeSH
- Mice, Inbred C57BL MeSH
- Oils chemistry pharmacokinetics MeSH
- Stereoisomerism MeSH
- Triglycerides chemistry MeSH
- Aquatic Organisms MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 13-hydroxylinoleic acid MeSH Browser
- Anti-Inflammatory Agents, Non-Steroidal MeSH
- Docosahexaenoic Acids MeSH
- Linoleic Acids MeSH
- Fatty Acids, Omega-3 MeSH
- Oils MeSH
- Triglycerides MeSH
SCOPE: The docosahexaenoic acid ester of hydroxy linoleic acid (13-DHAHLA) is a bioactive lipid with anti-inflammatory properties from the family of fatty acid esters of hydroxy fatty acids (FAHFA). METHODS AND RESULTS: To explore the biosynthesis of 13-DHAHLA from dietary oils, C57BL/6N mice are gavaged for 8 days with various corn oil/marine oil mixtures containing the same amount of DHA. Plasma levels of omega-3 FAHFAs are influenced by the lipid composition of the mixtures but do not reflect the changes in bioavailability of polyunsaturated fatty acids in plasma. Triacylglycerol-bound DHA and linoleic acid serve as more effective precursors for 13-DHAHLA synthesis than DHA bound in phospholipids or wax esters. Both 13(S)- and 13(R)-DHAHLA inhibit antigen and PGE2 -induced chemotaxis and degranulation of mast cells to a comparable extent and 13(S)-DHAHLA is identified as the predominant isomer in mouse adipose tissue. CONCLUSION: Here, the optimal nutritional source of DHA is identified, which supports production of anti-inflammatory FAHFAs, as triacylglycerol-based marine oil and also reveals a possible role of triacylglycerols in the synthesis of FAHFA lipokines.
See more in PubMed
M. M. Yore, I. Syed, P. M. Moraes-Vieira, T. Zhang, M. A. Herman, E. A. Homan, R. T. Patel, J. Lee, S. Chen, O. D. Peroni, A. S. Dhaneshwar, A. Hammarstedt, U. Smith, T. E. McGraw, A. Saghatelian, B. B. Kahn, Cell 2014, 159, 318.
O. Kuda, M. Brezinova, M. Rombaldova, B. Slavikova, M. Posta, P. Beier, P. Janovska, J. Veleba, J. Kopecky Jr., E. Kudova, T. Pelikanova, J. Kopecky, Diabetes 2016, 65, 2580.
T. H. Pham, N. P. Vidal, C. F. Manful, T. A. Fillier, R. P. Pumphrey, K. M. Doody, R. H. Thomas, Molecules 2019, 24.
Q. F. Zhu, J. W. Yan, T. Y. Zhang, H. M. Xiao, Y. Q. Feng, Anal. Chem. 2018, 90, 10056.
A. M. Liberati-Cizmek, M. Bilus, A. L. Brkic, I. C. Baric, M. Bakula, A. Hozic, M. Cindric, Plant Foods Hum. Nutr. 2019, 74, 235.
M. J. Kolar, S. Konduri, T. Chang, H. Wang, C. McNerlin, L. Ohlsson, M. Harrod, D. Siegel, A. Saghatelian, J. Biol. Chem. 2019, 294, 10698.
J. Lee, P. M. Moraes-Vieira, A. Castoldi, P. Aryal, E. U. Yee, C. Vickers, O. Parnas, C. J. Donaldson, A. Saghatelian, B. B. Kahn, J. Biol. Chem. 2016, 291, 22207.
M. Brezinova, O. Kuda, J. Hansikova, M. Rombaldova, L. Balas, K. Bardova, T. Durand, M. Rossmeisl, M. Cerna, Z. Stranak, J. Kopecky, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2018, 1863, 126.
V. Paluchova, M. Oseeva, M. Brezinova, T. Cajka, K. Bardova, K. Adamcova, P. Zacek, K. Brejchova, L. Balas, H. Chodounska, E. Kudova, R. Schreiber, R. Zechner, T. Durand, M. Rossmeisl, N. A. Abumrad, J. Kopecky, O. Kuda, Diabetes 2020, 69, 300.
A. Vijayakumar, P. Aryal, J. Wen, I. Syed, R. P. Vazirani, P. M. Moraes-Vieira, J. P. Camporez, M. R. Gallop, R. J. Perry, O. D. Peroni, G. I. Shulman, A. Saghatelian, T. E. McGraw, B. B. Kahn, Cell Rep. 2017, 21, 1021.
I. Syed, J. Lee, P. M. Moraes-Vieira, C. J. Donaldson, A. Sontheimer, P. Aryal, K. Wellenstein, M. J. Kolar, A. T. Nelson, D. Siegel, J. Mokrosinski, I. S. Farooqi, J. J. Zhao, M. M. Yore, O. D. Peroni, A. Saghatelian, B. B. Kahn, Cell Metab. 2018, 27, 419.
A. T. Nelson, M. J. Kolar, Q. Chu, I. Syed, B. B. Kahn, A. Saghatelian, D. Siegel, J. Am. Chem. Soc. 2017, 139, 4943.
T. V. Hansen, A. Vik, C. N. Serhan, Front. Pharmacol. 2018, 9, 1582.
C. N. Serhan, Nature 2014, 510, 92.
O. Kuda, M. Rossmeisl, J. Kopecky, Mol. Aspects Med. 2018, 64, 147.
R. B. Heath, F. Karpe, R. W. Milne, G. C. Burdge, S. A. Wootton, K. N. Frayn, J. Lipid Res. 2003, 44, 2065.
U.S. Department of Health and Human Services, Rockville, MD, USA, FDA 2005. https://www.fda.gov/media/72309/download
A. C. Hoper, W. Salma, A. M. Khalid, A. D. Hafstad, S. J. Sollie, J. Raa, T. S. Larsen, E. Aasum, Br. J. Nutr. 2013, 110, 2186.
M. Rossmeisl, Z. M. Jilkova, O. Kuda, T. Jelenik, D. Medrikova, B. Stankova, B. Kristinsson, G. G. Haraldsson, H. Svensen, I. Stoknes, P. Sjovall, Y. Magnusson, M. G. Balvers, K. C. Verhoeckx, E. Tvrzicka, M. Bryhn, J. Kopecky, PLoS One 2012, 7, e38834.
M. Rombaldova, P. Janovska, J. Kopecky, O. Kuda, Biochem. Biophys. Res. Commun. 2017, 490, 1080.
O. Kuda, Cell Metab. 2018, 28, 541.
T. Cajka, J. T. Smilowitz, O. Fiehn, Anal. Chem. 2017, 89, 12360.
M. Brezinova, T. Cajka, M. Oseeva, M. Stepan, K. Dadova, L. Rossmeislova, M. Matous, M. Siklova, M. Rossmeisl, O. Kuda, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2020, 1865, 158576.
H. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa, J. VanderGheynst, O. Fiehn, M. Arita, Nat. Methods 2015, 12, 523.
L. Draberova, V. Bugajev, L. Potuckova, I. Halova, M. Bambouskova, I. Polakovicova, R. J. Xavier, B. Seed, P. Draber, Mol. Cell. Biol. 2014, 34, 4285.
A. K. Rudolph, P. D. Burrows, M. R. Wabl, Eur. J. Immunol. 1981, 11, 527.
J. Chong, O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D. S. Wishart, J. Xia, Nucleic Acids Res. 2018, 46, W486.
J. Z. Haeggstrom, C. D. Funk, Chem. Rev. 2011, 111, 5866.
K. G. Primdahl, M. Aursnes, M. E. Walker, R. A. Colas, C. N. Serhan, J. Dalli, T. V. Hansen, A. Vik, J. Nat. Prod. 2016, 79, 2693.
V. Vangaveti, B. T. Baune, R. L. Kennedy, Ther. Adv. Endocrinol. Metab. 2010, 1, 51.
A. Vik, T. V. Hansen, O. Kuda, Tetrahedron Lett. 2019, 60, 151331.
T. V. Hansen, J. Dalli, C. N. Serhan, RSC Adv. 2016, 6, 28820.
L. A. Paquette, R. F. Doehner, J. Org. Chem. 1980, 45, 5105.
P. Bradding, G. Arthur, Clin. Exp. Allergy 2016, 46, 194.
X. Wang, M. Kulka, J. Leukocyte Biol. 2015, 97, 859.
H. S. Kuehn, M. Radinger, J. M. Brown, K. Ali, B. Vanhaesebroeck, M. A. Beaven, D. D. Metcalfe, A. M. Gilfillan, J. Cell Sci. 2010, 123, 2576.
H. S. Kuehn, M. A. Beaven, H. T. Ma, M. S. Kim, D. D. Metcalfe, A. M. Gilfillan, Cell. Signalling 2008, 20, 625.
D. Tan, M. E. Ertunc, S. Konduri, J. Zhang, A. M. Pinto, Q. Chu, B. B. Kahn, D. Siegel, A. Saghatelian, J. Am. Chem. Soc. 2019, 141, 8798.
O. Kuda, M. Brezinova, J. Silhavy, V. Landa, V. Zidek, C. Dodia, F. Kreuchwig, M. Vrbacky, L. Balas, T. Durand, N. Hubner, A. B. Fisher, J. Kopecky, M. Pravenec, Diabetes 2018, 67, 1190.
W. H. Parsons, M. J. Kolar, S. S. Kamat, A. B. Cognetta III, H. J. J. E. Saez, B. B. Kahn, A. Saghatelian, B. F. Cravatt, Nat. Chem. Biol. 2016, 12, 367.
Z. Yang, V. Piironen, A. M. Lampi, Food Res. Int. 2017, 100, 335.
O. Kuda, Biochimie 2017, 136, 12.
H. Bisgaard, J. Stokholm, B. L. Chawes, N. H. Vissing, E. Bjarnadottir, A. M. Schoos, H. M. Wolsk, T. M. Pedersen, R. K. Vinding, S. Thorsteinsdottir, N. V. Folsgaard, N. R. Fink, J. Thorsen, A. G. Pedersen, J. Waage, M. A. Rasmussen, K. D. Stark, S. F. Olsen, K. Bonnelykke, N. Engl. J. Med. 2016, 375, 2530.
D. Fussbroich, K. Zimmermann, A. Gopel, O. Eickmeier, J. Trischler, S. Zielen, R. Schubert, C. Beermann, Lipids Health Dis. 2019, 18, 16.
Tissue-specific sex difference in the metabolism of fatty acid esters of hydroxy fatty acids