• This record comes from PubMed

Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress

. 2020 Apr 16 ; 10 (1) : 6508. [epub] 20200416

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 32300246
PubMed Central PMC7162918
DOI 10.1038/s41598-020-63489-4
PII: 10.1038/s41598-020-63489-4
Knihovny.cz E-resources

Hydrogen sulphide (H2S) is involved in the physiology and pathophysiology of different cell types, but little is known about its role in sperm cells. Because of its reducing properties, we hypothesise that H2S protects spermatozoa against the deleterious effects of oxidative stress, a condition that is common to several male fertility disorders. This study aimed i) to determine the total antioxidant capacities of Na2S and GYY4137, which are fast- and slow-releasing H2S donors, respectively, and ii) to test whether H2S donors are able to protect spermatozoa against oxidative stress. We found that Na2S and GYY4137 show different antioxidant properties, with the total antioxidant capacity of Na2S being mostly unstable and even undetectable at 150 µM. Moreover, both H2S donors preserve sperm motility and reduce acrosome loss, although the effects were both dose and donor dependent. Within the range of concentrations tested (3-300 µM), GYY4137 showed positive effects on sperm motility, whereas Na2S was beneficial at the lowest concentration but detrimental at the highest. Our findings show that Na2S and GYY4137 have different antioxidant properties and suggest that both H2S donors might be used as in vitro therapeutic agents against oxidative stress in sperm cells, although the optimal therapeutic range differs between the compounds.

See more in PubMed

Kolluru GK, Shen X, Bir SC, Kevil CG. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide-Biol. Chem. 2013;35:5–20. doi: 10.1016/j.niox.2013.07.002. PubMed DOI PMC

Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012;92:791–896. doi: 10.1152/physrev.00017.2011. PubMed DOI

Sugiura Y, et al. Cadmium exposure alters metabolomics of sulfur-containing amino acids in rat testes. Antioxid. Redox Signal. 2005;7:781–787. doi: 10.1089/ars.2005.7.781. PubMed DOI

Li G, Xie ZZ, Chua JM, Wong PC, Bian J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide-Biol. Chem. 2015;46:165–171. doi: 10.1016/j.niox.2014.10.005. PubMed DOI

Gao DD, et al. Cellular mechanism underlying hydrogen sulfide mediated epithelial K+ secretion in rat epididymis. Front. Physiol. 2019;9:1886. doi: 10.3389/fphys.2018.01886. PubMed DOI PMC

D’Emmanuele di Villa Bianca R, et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. USA. 2009;106:4513–4518. doi: 10.1073/pnas.0807974105. PubMed DOI PMC

Martínez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 2008;23:783–791. doi: 10.1093/humrep/den024. PubMed DOI

Wang J, et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid. Redox Signal. 2018;28:1447–1462. doi: 10.1089/ars.2016.6968. PubMed DOI

Zhao Y, et al. Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci. Rep. 2016;6:37884. doi: 10.1038/srep37884. PubMed DOI PMC

Song ZJ, et al. Hydrogen sulfide donors in research and drug development. Med. Chem. Commun. 2014;5:557–570. doi: 10.1039/C3MD00362K. DOI

Wu D, Hu Q, Zhu Y. Therapeutic application of hydrogen sulfide donors: the potential and challenges. Front. Med. 2016;10:18–27. doi: 10.1007/s11684-015-0427-6. PubMed DOI

Rose, P., Dymock, B. W. & Moore, P. K. GYY4137, a novel water-soluble, H2S-releasing molecule in Methods in Enzymology (eds. Cadenas, E. & Packer, L.) 143–167 (Elsevier, 2015). PubMed

Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004;18:1165–1167. doi: 10.1096/fj.04-1815fje. PubMed DOI

Yonezawa D, et al. A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology. 2007;241:11–18. doi: 10.1016/j.tox.2007.07.020. PubMed DOI

Han W, Dong Z, Dimitropoulou C, Su Y. Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice. Antioxid. Redox. Signal. 2011;15:2121–2134. doi: 10.1089/ars.2010.3821. PubMed DOI PMC

Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J. Mens Health. 2014;32:1–17. doi: 10.5534/wjmh.2014.32.1.1. PubMed DOI PMC

Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 2016;28:1–10. doi: 10.1071/RD15325. PubMed DOI

Ning JZ, et al. The protective effects of GYY4137 on testicular torsion/detorsion injury in rats. Int. J. Clin. Exp. Med. 2018;11:3387–3395.

Pintus E, Kadlec M, Jovičić M, Sedmíková M, Ros-Santaella JL. Aminoguanidine protects boar spermatozoa against the deleterious effects of oxidative stress. Pharmaceutics. 2018;10:212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC

Martín Muñoz P, et al. Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OH•) only induces spermptosis. Reprod. Domest. Anim. 2018;53:54–67. doi: 10.1111/rda.13052. PubMed DOI

Barranco I, et al. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015;5:18538. doi: 10.1038/srep18538. PubMed DOI PMC

Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 2008;40:533–539. doi: 10.1007/s10863-008-9166-6. PubMed DOI

Whiteman M, et al. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal. 2010;12:1147–1154. doi: 10.1089/ars.2009.2899. PubMed DOI PMC

Kim TJ, Lee YJ, Ahn YJ, Lee GJ. Characterization of H2S releasing properties of various H2S donors utilizing microplate cover-based colorimetric assay. Anal. Biochem. 2019;574:57–65. doi: 10.1016/j.ab.2019.03.021. PubMed DOI

Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 2010;12:1–13. doi: 10.1089/ars.2008.2282. PubMed DOI

Benetti LR, et al. Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur. J. Pharmacol. 2013;698:463–469. doi: 10.1016/j.ejphar.2012.11.025. PubMed DOI

Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 1996;145:532–541. doi: 10.2307/3579271. PubMed DOI

Cao X, et al. Renal protective effect of hydrogen sulfide in cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 2018;29:455–470. doi: 10.1089/ars.2017.7157. PubMed DOI

Szabo C, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 2014;171:2099–2122. doi: 10.1111/bph.12369. PubMed DOI PMC

Wiliński B, et al. Sodium hydrosulfide exerts a transitional attenuating effect on spermatozoa migration in vitro. Folia Biol. 2015;63:145–149. doi: 10.3409/fb63_2.145. PubMed DOI

Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008;52:427–437. doi: 10.1387/ijdb.072522bs. PubMed DOI

Elrod JW, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA. 2007;104:15560–15565. doi: 10.1073/pnas.0705891104. PubMed DOI PMC

DeLeon ER, Stoy GF, Olson KR. Passive loss of hydrogen sulfide in biological experiments. Anal. Biochem. 2012;421:203–207. doi: 10.1016/j.ab.2011.10.016. PubMed DOI

Pursel VG, Johnson LA, Rampacek GB. Acrosome morphology of boar spermatozoa incubated before cold shock. J. Anim. Sci. 1972;34:278–283. doi: 10.2527/jas1972.342278x. PubMed DOI

Mortimer D, Curtis EF, Miller RG. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J. Reprod. Fertil. 1987;81:127–135. doi: 10.1530/jrf.0.0810127. PubMed DOI

Sancho, S. & Vilagran, I. The boar ejaculate: sperm function and seminal plasma analyses in BoarReproduction: Fundamentals and New Biotechnological Trends (eds. Bonet, S., Casas, I., Holt, W. V. & Yeste, M.) 471–516 (Springer, 2013).

Awda BJ, Mackenzie-Bell M, Buhr MM. Reactive oxygen species and boar sperm function. Biol. Reprod. 2009;81:553–561. doi: 10.1095/biolreprod.109.076471. PubMed DOI

Kumaresan A, et al. Preservation of boar semen at 18 degrees C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci. 2009;110:162–171. doi: 10.1016/j.anireprosci.2008.01.006. PubMed DOI

Lopez Rodriguez A, Van Soom A, Arsenakis I, Maes D. Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Manag. 2017;3:15. doi: 10.1186/s40813-017-0062-5. PubMed DOI PMC

Roca J, Parrilla I, Bolarin A, Martinez EA, Rodriguez-Martinez H. Will AI in pigs become more efficient? Theriogenology. 2016;86:187–196. doi: 10.1016/j.theriogenology.2015.11.026. PubMed DOI

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI

Hassan E, Kahilo K, Kamal T, El-Neweshy M, Hassan M. Protective effect of diallyl sulfide against lead-mediated oxidative damage, apoptosis and down-regulation of CYP19 gene expression in rat testes. Life Sci. 2019;226:193–201. doi: 10.1016/j.lfs.2019.04.020. PubMed DOI

Grunewald S, Paasch U, Glander HJ, Anderegg U. Mature human spermatozoa do not transcribe novel RNA. Andrologia. 2005;37:69–71. doi: 10.1111/j.1439-0272.2005.00656.x. PubMed DOI

Tvrdá E, Kňažická Z, Bárdos L, Massányi P, Lukáč N. Impact of oxidative stress on male fertility—A review. Acta Vet. Hung. 2011;59:465–484. doi: 10.1556/AVet.2011.034. PubMed DOI

Fraser L, Lecewicz M, Strzezek J. Fluorometric assessments of viability and mitochondrial status of boar spermatozoa following liquid storage. Pol. J. Vet. Sci. 2002;5:85–92. PubMed

Harrison RAP, Vickers SE. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990;88:343–352. doi: 10.1530/jrf.0.0880343. PubMed DOI

Grieblová A, Pintus E, Ros-Santaella JL. Integrity of head and tail plasmalemma is associated with different kinetic variables in boar sperm. Anim. Reprod. Sci. 2017;184:218–227. doi: 10.1016/j.anireprosci.2017.07.020. PubMed DOI

Brzezińska-Ślebodzińska E, Ślebodziński AB, Pietras B, Wieczorek G. Antioxidant effect of vitamin E and glutathione on lipid peroxidation in boar semen plasma. Biol. Trace Elem. Res. 1995;47:69–74. doi: 10.1007/BF02790102. PubMed DOI

García-Vázquez FA, et al. Morphometry of boar sperm head and flagellum in semen backflow after insemination. Theriogenology. 2015;84:566–574. doi: 10.1016/j.theriogenology.2015.04.011. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...