Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32357361
DOI
10.1038/s41390-020-0926-2
PII: 10.1038/s41390-020-0926-2
Knihovny.cz E-resources
- MeSH
- Bilirubin chemistry MeSH
- Cholesterol metabolism MeSH
- Crigler-Najjar Syndrome metabolism therapy MeSH
- Dietary Fats pharmacokinetics MeSH
- Ezetimibe pharmacology therapeutic use MeSH
- Feces chemistry MeSH
- Hydrocarbons, Fluorinated pharmacology therapeutic use MeSH
- Haptoglobins analysis MeSH
- Hyperbilirubinemia therapy MeSH
- Liver X Receptors metabolism MeSH
- Rats MeSH
- Chenodeoxycholic Acid analogs & derivatives pharmacology therapeutic use MeSH
- Lipids blood MeSH
- Random Allocation MeSH
- Rats, Gunn MeSH
- PPAR delta metabolism MeSH
- Receptors, Cytoplasmic and Nuclear metabolism MeSH
- Intestines drug effects metabolism MeSH
- Sulfonamides pharmacology therapeutic use MeSH
- Bile chemistry MeSH
- Bile Acids and Salts metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bilirubin MeSH
- Cholesterol MeSH
- Dietary Fats MeSH
- Ezetimibe MeSH
- farnesoid X-activated receptor MeSH Browser
- Hydrocarbons, Fluorinated MeSH
- Haptoglobins MeSH
- Liver X Receptors MeSH
- Chenodeoxycholic Acid MeSH
- Lipids MeSH
- obeticholic acid MeSH Browser
- PPAR delta MeSH
- Receptors, Cytoplasmic and Nuclear MeSH
- Sulfonamides MeSH
- T0901317 MeSH Browser
- Bile Acids and Salts MeSH
BACKGROUND: Unconjugated hyperbilirubinemia, a feature of neonatal jaundice or Crigler-Najjar syndrome, can lead to neurotoxicity and even death. We previously demonstrated that unconjugated bilirubin (UCB) can be eliminated via transintestinal excretion in Gunn rats, a model of unconjugated hyperbilirubinemia, and that this is stimulated by enhancing fecal fatty acid excretion. Since transintestinal excretion also occurs for cholesterol (TICE), we hypothesized that increasing fecal cholesterol excretion and/or TICE could also enhance fecal UCB disposal and subsequently lower plasma UCB concentrations. METHODS: To determine whether increasing fecal cholesterol excretion could ameliorate unconjugated hyperbilirubinemia, we treated hyperbilirubinemic Gunn rats with ezetimibe (EZE), an intestinal cholesterol absorption inhibitor, and/or a liver X receptor (LXR) and farnesoid X receptor (FXR) agonist (T0901317 (T09) and obeticholic acid (OCA), respectively), known to stimulate TICE. RESULTS: We found that EZE treatment alone or in combination with T09 or OCA increased fecal cholesterol disposal but did not lower plasma UCB levels. CONCLUSIONS: These findings do not support a link between the regulation of transintestinal excretion of cholesterol and bilirubin. Furthermore, induction of fecal cholesterol excretion is not a potential therapy for unconjugated hyperbilirubinemia. IMPACT: Increasing fecal cholesterol excretion is not effective to treat unconjugated hyperbilirubinemia. This is the first time a potential relation between transintestinal excretion of cholesterol and unconjugated bilirubin is investigated. Transintestinal excretion of cholesterol and unconjugated bilirubin do not seem to be quantitatively linked. Unlike intestinal fatty acids, cholesterol cannot "capture" unconjugated bilirubin to increase its excretion. These results add to our understanding of ways to improve and factors regulating unconjugated bilirubin disposal in hyperbilirubinemic conditions.
See more in PubMed
Ostrow, J. D., Pascolo, L., Brites, D. & Tiribelli, C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 10, 65–70 (2004). DOI
McDonnell, W. M., Hitomi, E. & Askari, F. K. Identification of bilirubin UDP-GTs in the human alimentary tract in accordance with the gut as a putative metabolic organ. Biochem. Pharmacol. 51, 483–488 (1996). DOI
Arias, I. M., Johnson, L. & Wolfson, S. Biliary excretion of injected conjugated and unconjugated bilirubin by normal and Gunn rats. Am. J. Physiol. 200, 1091–1094 (1961). DOI
Kotal, P. et al. Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr. Res. 42, 195–200 (1997). DOI
Nishioka, T. et al. Orlistat treatment increases fecal bilirubin excretion and decreases plasma bilirubin concentrations in hyperbilirubinemic Gunn rats. J. Pediatr. 143, 327–334 (2003). DOI
Cuperus, F. J. C. et al. Effective treatment of unconjugated hyperbilirubinemia with oral bile salts in Gunn rats. Gastroenterology 136, 673.e1–682.e1 (2009). DOI
Kruit, J. K. et al. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128, 147–156 (2005). DOI
van der Veen, J. N. et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 284, 19211–19219 (2009). DOI
Jakulj, L. et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 24, 783–794 (2016). DOI
Vrins, C. L. J. et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J. Lipid Res. 50, 2046–2054 (2009). DOI
de Boer, J. F. et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152, 1126.e6–1138.e6 (2017).
Grefhorst, A. et al. Pharmacological LXR activation reduces presence of SR-B1 in liver membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis 222, 382–389 (2012). DOI
de Boer, J. F., Kuipers, F. & Groen, A. K. Cholesterol transport revisited: a new turbo mechanism to drive cholesterol excretion. Trends Endocrinol. Metab. 29, 123–133 (2018). DOI
Terunuma, S., Kumata, N. & Osada, K. Ezetimibe impairs uptake of dietary cholesterol oxidation products and reduces alterations in hepatic cholesterol metabolism and antioxidant function in rats. Lipids 48, 587–595 (2013). DOI
van de Peppel, I. P. et al. Efficient reabsorption of transintestinally excreted cholesterol is a strong determinant for cholesterol disposal in mice. J. Lipid Res. 60, 1562–1572 (2019). DOI
Hafkamp, A. M. et al. Novel kinetic insights into treatment of unconjugated hyperbilirubinemia: phototherapy and orlistat treatment in Gunn rats. Pediatr. Res. 59, 506–512 (2006). DOI
Hafkamp, A. M., Havinga, R., Sinaasappel, M. & Verkade, H. J. Effective oral treatment of unconjugated hyperbilirubinemia in Gunn rats. Hepatology 41, 526–534 (2005). DOI
Cuperus, F. J. C., Iemhoff, A. A. & Verkade, H. J. Combined treatment strategies for unconjugated hyperbilirubinemia in Gunn rats. Pediatr. Res 70, 560–565 (2011). DOI
van der Velde, A. E. et al. Regulation of direct transintestinal cholesterol excretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G203–G208 (2008). DOI
Bulmer, A. C., Verkade, H. J. & Wagner, K. H. Bilirubin and beyond: a review of lipid status in Gilbert’s syndrome and its relevance to cardiovascular disease protection. Prog. Lipid Res. 52, 193–205 (2013). DOI
Ronda, O. A. H. O., van Dijk, T. H., Verkade, H. J. & Groen, A. K. Measurement of intestinal and peripheral cholesterol fluxes by a dual-tracer balance method. Curr. Protoc. Mouse Biol. 6, 408–434 (2016). DOI
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959). DOI
Heuman, D. M. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 30, 719–730 (1989). DOI
Xu, Y. et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64, 1072–1085 (2016). DOI
Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor. J. Pharmacol. Exp. Ther. 343, 556–567 (2012). DOI
Sugizaki, T. et al. The Niemann-Pick C1 Like 1 (NPC1L1) inhibitor ezetimibe improves metabolic disease via decreased liver X receptor (LXR) activity in liver of obese male mice. Endocrinology 155, 2810–2819 (2014). DOI
Shih, A. W. Y., McFarlane, A. & Verhovsek, M. Haptoglobin testing in hemolysis: measurement and interpretation. Am. J. Hematol. 89, 443–447 (2014). DOI
Nakano, T. et al. Ezetimibe promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. PLoS ONE 11, e0152207 (2016). DOI
Van Heek, M. et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br. J. Pharmacol. 129, 1748–1754 (2000). DOI
Ghosal, A. et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia). Drug Metab. Dispos. 32, 314–320 (2004). DOI
Calpe-Berdiel, L. et al. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J. Lipid Res. 49, 1904–1911 (2008). DOI
Oosterveer, M. H., Grefhorst, A., Groen, A. K. & Kuipers, F. The liver X receptor: control of cellular lipid homeostasis and beyond. Prog. Lipid Res. 49, 343–352 (2010). DOI
Jonker, J. W., Liddle, C. & Downes, M. FXR and PXR: potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 130, 147–158 (2012). DOI
Van Der Veere, C. N. et al. Influence of dietary calcium phosphate on the disposition of bilirubin in rats with unconjugated hyperbilirubinemia. Hepatology 24, 620–626 (1996). DOI
Duval, C. et al. Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem. Biophys. Res. Commun. 340, 1259–1263 (2006). DOI
Kawase, A., Araki, Y., Ueda, Y., Nakazaki, S. & Iwaki, M. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice. Eur. J. Drug Metab. Pharmacokinet. 41, 457–463 (2016). DOI
Dimeski, G., Mollee, P. & Carter, A. Increased lipid concentration is associated with increased hemolysis. Clin. Chem. 51, 2425 (2005). DOI
London, I. M., West, R., Shemin, D. & Rittenberg, D. On the origin of bile pigment in normal man. J. Biol. Chem. 184, 351–358 (1950). DOI