Accelerated Shape Forming and Recovering, Induction, and Release of Adhesiveness of Conductive Carbon Nanotube/Epoxy Composites by Joule Heating
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32370040
PubMed Central
PMC7284752
DOI
10.3390/polym12051030
PII: polym12051030
Knihovny.cz E-resources
- Keywords
- Joule heating, accelerated forming, carbon nanotubes, epoxy, fast curing, shape memory,
- Publication type
- Journal Article MeSH
: The versatile properties of a nanopaper consisting of a porous network of multi-walled carbon nanotubes were applied to enhance the mechanical and electrical properties of a thermosetting epoxy polymer. The embedded nanopaper proved useful both in the monitoring of the curing process of the epoxy resin by the self-regulating Joule heating and in the supervising of tensile deformations of the composite by detecting changes in its electrical resistance. When heated by Joule heating above its glass transition temperature, the embedded carbon nanotube nanopaper accelerated not only the modelling of the composites into various shapes, but also the shape recovery process, wherein the stress in the nanopaper was released and the shape of the composite reverted to its original configuration. Lastly, in comparison with its respective epoxy adhesive, the internally heated electro-conductive carbon nanotube nanopaper/epoxy composite not only substantially shortened curing time while retaining comparable strength of the adhesive bonding of the steel surfaces, but also enabled a release of such bonds by repeated application of DC current.
See more in PubMed
Slobodian P., Pertegás S.L., Riha P., Matyas R., Olejnik R., Schledjewski R., Kovar M. Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection. Compos. Sci. Technol. 2018;156:61–69. doi: 10.1016/j.compscitech.2017.12.012. DOI
Joseph C., Viney C. Electrical resistance curing of carbon-fibre/epoxy composites. Compos. Sci. Technol. 2000;60:315–319. doi: 10.1016/S0266-3538(99)00112-8. DOI
Mas B., Fernandez-Blazquez J.P., Duval J., Bunyn H., Vilatela J.J. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon. 2013;63:523–529. doi: 10.1016/j.carbon.2013.07.029. DOI
Chu H., Zhang Z., Liu Y., Leng J. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon. 2014;66:154–163. doi: 10.1016/j.carbon.2013.08.053. DOI
Zhang Q., Yu Y., Yang K., Zhang B., Zha K., Xiong G., Zhang X. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicer. Carbon. 2017;124:296–307. doi: 10.1016/j.carbon.2017.09.001. DOI
Liu Y., Van Vliet T., Tao Y., Busfield J.J.C., Peijs T., Bilotti E., Zhang H. Sustainable and self-regulating out-of-oven manufacturing of FRPs with integrated multifunctional capabilities. Compos. Sci. Technol. 2020;190:108032. doi: 10.1016/j.compscitech.2020.108032. DOI
Xia T., Zeng D., Li Z., Young R.J., Vallés C., Kinloch I. Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Compos. Sci. Technol. 2018;164:304–312. doi: 10.1016/j.compscitech.2018.05.053. DOI
Liu C., Li M., Gu Y., Gong Y., Liang J., Wang S., Zhang Z. Resistance heating forming process based on carbon fiber veil for continuous glass fiber reinforced polypropylene. J. Reinf. Plast. Comp. 2018;37:366–380. doi: 10.1177/0731684417751058. DOI
Sung P.C., Chang S.C. The adhesive bonding with buckypaper-carbon nanotube/epoxy composite adhesives cured by Joule heating. Carbon. 2015;91:215–223. doi: 10.1016/j.carbon.2015.04.081. DOI
Monreal-Bernal A., Mas B., Fernández-Blázquez J.P., Vilatela J.J. Electric curing of nanocarbon/epoxy adhesives for composite repair; Proceedings of the ECCM16—16th European Conference on Composite Materials; Seville, Spain. 22–26 June 2014.
Eisenhaure J., Kim S. An internally heated shape memory polymer dry adhesive. Polymers. 2014;6:2274–2286. doi: 10.3390/polym6082274. DOI
Ashrafi M., Devasia S., Tuttle M.E. Resistive embedded heating for homogeneous curing of adhesively bonded joints. Int. J. Adhes. Adhes. 2015;57:34–39. doi: 10.1016/j.ijadhadh.2014.10.002. DOI
Smith B.P., Ashrafi M., Tuttle M.E., Devasia S. Boundary control of embedded heaters for uniform bondline temperatures during composite joining. ASME J. Manuf. Sci. Eng. 2018;140:091013. doi: 10.1115/1.4040545. DOI
Lima M.G.R., Orozco F., Picchioni F., Morreno-Villoslada I., Pucci A., Bose R.K., Araya-Hermosilla R. Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds. Polymers. 2019;11:1885. doi: 10.3390/polym11111885. PubMed DOI PMC
Sanchez-Gonzales C.M., Soriano-Pena J.P., Rubio-Avalos J.C., Pacheco-Ibarra J.J. Fabrication of flexible piezoresistive sensors based on RTV-silicone and milled carbon fibers and the temperature´s effect on their electric resistance. Sens. Actuators A Phys. 2020;302:111311. doi: 10.1016/j.sna.2019.111811. DOI
Lei M., Chen Z., Lu H., Yu K. Recent progress in shape memory polymer composites: Methods, properties, applications and prospects. Nanotechnol. Rev. 2019;8:327–351. doi: 10.1515/ntrev-2019-0031. DOI
Le H.H., Kolesov I., Ali Z.A., Uthardt M., Osazuwa O., Ilisch S., Radusch H.J. Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. J. Mater. Sci. 2010;45:5851–5859. doi: 10.1007/s10853-010-4661-7. DOI
Lu H., Liu Y., Gou J., Leng J., Du S. Surface coating of multi-walled carbon nanotube nanopaper on shape-memory polymer for multifunctionalization. Comp. Sci. Tech. 2011;71:1427–1434. doi: 10.1016/j.compscitech.2011.05.016. DOI
Weng M., Chen L., Huang F., Liu C., Zhang W. Transparent actuator made by highly-oriented carbon nanotube film for bio-inspired optical systems. Nanotechnology. 2020;31:065501. doi: 10.1088/1361-6528/ab5041. PubMed DOI
Slobodian P., Riha P., Saha P. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon. 2012;50:3446–3453. doi: 10.1016/j.carbon.2012.03.008. DOI
Slobodian P., Riha P., Lengalova A., Svoboda P., Saha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI
Slobodian P. Rigid amorphous fraction in poly(ethylene terephthalate) determined by dilatometry. J. Therm. Anal. Calorim. 2008;94:545–551. doi: 10.1007/s10973-007-8566-x. DOI
Slobodian P., Riha P., Rychwalski R.W., Emri I., Saha P., Kubat J. The relation between relaxed enthalpy and volume during physical aging of amorphous polymers and selenium. Eur. Polym. J. 2006;42:2824–2837. doi: 10.1016/j.eurpolymj.2006.06.003. DOI
Slobodian P., Riha P., Olejnik R., Benlikaya R. Analysis of sensing properties of thermoelectric vapor sensor made of carbon nanotubes/ethylene-octene copolymer composites. Carbon. 2016;110:257–266. doi: 10.1016/j.carbon.2016.09.023. DOI
Slobodian P., Svoboda P., Riha P., Boruta R., Saha P. Synthesis of PMMA-co-PMAA Copolymer Brush on Multi-Wall Carbon Nanotubes. J. Surf. Eng. Mater. Adv. Technol. 2012;2:221–226. doi: 10.4236/jsemat.2012.223034. DOI
Licea-Jimenez L., Henrio P.Y., Lund A., Laurie T.M., Perez-Garcia S.A., Nyborg L., Hassander H., Bertilsson H., Rychwalski R.W. MWNT reinforced melamine-formaldehyde containing alpha-cellulose. Compos. Sci. Technol. 2007;67:844–854.
Wang Z.P., Zheng S.R., Zheng Y.P. Polymer Matrix Composites and Technology. Woodhead Publishing Limited; Cambridge, UK: 2011. pp. 253–318.
Polymer Processing and Surfaces
Microstrip Resonant Sensor for Differentiation of Components in Vapor Mixtures