MISCAST: MIssense variant to protein StruCture Analysis web SuiTe

. 2020 Jul 02 ; 48 (W1) : W132-W139.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32402084

Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.

Zobrazit více v PubMed

Claussnitzer M., Cho J.H., Collins R., Cox N.J., Dermitzakis E.T., Hurles M.E., Kathiresan S., Kenny E.E., Lindgren C.M., MacArthur D.G. et al. .. A brief history of human disease genetics. Nature. 2020; 577:179–189. PubMed PMC

Glusman G. Clinical applications of sequencing take center stage. Genome. Biol. 2013; 14:303. PubMed PMC

Dugger S.A., Platt A., Goldstein D.B.. Drug development in the era of precision medicine. Nat. Rev. Drug. Discov. 2018; 17:183–196. PubMed PMC

Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B. et al. .. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536:285–291. PubMed PMC

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P. et al. .. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. 2019; bioRxiv doi:30 January 2019, preprint: not peer reviewed10.1101/531210. DOI

Stenson P.D., Mort M., Ball E.V., Shaw K., Phillips A.D., Cooper D.N.. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2014; 46:D1062–D1067. PubMed PMC

Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W. et al. .. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2018; 133:1–9. PubMed PMC

McKusick V.A. Mendelian Inheritance in Man and Its Online Version, OMIM. Am. J. Hum. Genet. 2007; 80:588–604. PubMed PMC

Berman H.M., Westbrook W., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC

Armstrong D.R., Berrisford J.M., Conroy M.J., Gutmanas A., Anyango S., Choudhary P., Clark A.R., Dana J.M., Deshpande M., Dunlop R. et al. .. PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020; 48:D335–D343. PubMed PMC

Sivley R.M., Dou X., Meiler J., Bush W.S., Capra J.A.. Comprehensive analysis of constraint on the spatial distribution of missense variants in human protein structures. Am. J. Hum. Genet. 2018; 102:415–426. PubMed PMC

Hicks M., Bartha I., di Iulio J., Venter J.C., Telenti A.. Functional characterization of 3D protein structures informed by human genetic diversity. Proc. Natl. Acad. Sci. U.S.A. 2019; 116:8960–8965. PubMed PMC

Meyer M.J., Lapcevic R., Romero A.E., Yoon M., Das J., Beltran J.F., Mort M., Stenson P.D., Cooper D.N., Paccanaro A. et al. .. mutation3D: cancer gene prediction through atomic clustering of coding variants in the structural proteome. Hum. Mutat. 2016; 37:447–456. PubMed PMC

Jubb H.C., Saini H.K., Verdonk M.L., Forbes S.A.. COSMIC-3D provides structural perspectives on cancer genetics for drug discovery. Nat. Genet. 2018; 50:1200–1202. PubMed PMC

Laskowski R.A., Stephenson J.D., Sillitoe I., Orengo C.A., Thornton J.M.. VarSite: disease variants and protein structure. Protein Sci. 2020; 29:111–119. PubMed PMC

Stephenson J.D., Laskowski R.A., Nightingale A., Hurles M.E., Thornton J.M.. VarMap: a web tool for mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations. Bioinformatics. 2019; 35:4854–4856. PubMed PMC

Ofoegbu T.C., David A., Kelley L.A., Mezulis S., Islam S.A., Mersmann S.F. et al. .. PhyreRisk: a dynamic web application to bridge genomics, proteomics and 3D structural data to guide interpretation of human genetic variants. J. Mol. Biol. 2019; 431:2460–2466. PubMed PMC

Segura J., Sanchez-Garcia R., Martinez M., Cuenca-Alba J., Tabas-Madrid D., Sorzano C.O.S., Carazo J.M.. 3DBIONOTES v2. 0: a web server for the automatic annotation of macromolecular structures. Bioinformatics. 2017; 33:3655–3657. PubMed PMC

Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T. et al. .. The variant call format and VCFtools. Bioinformatics. 2011; 27:2156–2158. PubMed PMC

Velankar S., Dana J.M., Jacobsen J., van Ginkel G., Gane P.J., Luo J., Oldfield T.J., O'Donovan C., Martin M.J., Kleywegt G.J.. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 2013; 41:D483–D489. PubMed PMC

Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D., Thomas P.D.. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2016; 45:D183–D189. PubMed PMC

Kabsch W., Sander C.. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. PubMed

Laskowski R.A., Jablonska J., Pravda L., Varekova R.S., Thornton J.M.. PDBsum: structural summaries of PDB entries. Protein Sci. 2018; 27:129–134. PubMed PMC

Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., Skrzypek E.. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015; 43:D512–D520. PubMed PMC

UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018; 46:2699. PubMed PMC

Yachdav G., Wilzbach S., Rauscher B., Sheridan R., Sillitoe I., Procter J., Lewis S.E., Rost B., Goldberg T.. MSAViewer: interactive JavaScript visualization of multiple sequence alignments. Bioinformatics. 2016; 32:3501–3503. PubMed PMC

Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016; NY: Springer-Verlag.

Hoksza D., Gawron P., Ostaszewski M., Schneider R.. MolArt: a molecular structure annotation and visualization tool. Bioinformatics. 2018; 34:4127–4128. PubMed PMC

Nightingale A., Antunes R., Alpi E., Bursteinas B., Gonzales L., Liu W., Luo J., Qi G., Turner E., Martin M.. The proteins API: accessing key integrated protein and genome information. Nucleic Acids Res. 2017; 45:W539–W544. PubMed PMC

Watkins X., Garcia L.J., Pundir S., Martin M.J., UniProt C.. ProtVista: visualization of protein sequence annotations. Bioinformatics. 2017; 33:2040–2041. PubMed PMC

Sehnal D., Deshpande M., Varekov′ R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koca J.. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed

Iqbal S., Jespersen J.B., Pérez-Palma E., May P., Hoksza D., Heyne H.O., Ahmed S.S., Rifat Z.T., Rahman M.S., Lage K. et al. .. Burden analysis of missense variants in 1,330 disease-associated genes on 3D provides insights into the mutation effects. 2019; bioRxiv doi:05 March 2020, preprint: not peer reviewed10.1101/693259. DOI

Pérez-Palma, Gramm M.E., Nürnberg P., May P., Lal D.. Simple ClinVar: an interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database. Nucleic Acids Res. 2019; 47:W99–W105. PubMed PMC

Ittisoponpisan S., Islam S.A., Khanna T., Alhuzimi E., David A., Sternberg M.J.. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated?. J. Mol. Biol. 2019; 431:2197–2212. PubMed PMC

Wagih O., Galardini M., Busby B.P., Memon D., Typas A., Beltrao P.. A resource of variant effect predictions of single nucleotide variants in model organisms. Mol. Syst. Biol. 2018; 14:e8430. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...