Psi4 1.4: Open-source software for high-throughput quantum chemistry
Status PubMed-not-MEDLINE Language English Country United States Media print
Document type Journal Article
PubMed
32414239
PubMed Central
PMC7228781
DOI
10.1063/5.0006002
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.
Acellera Labs C Doctor Trueta 183 08005 Barcelona Spain
Center for Computational Quantum Chemistry University of Georgia Athens Georgia 30602 USA
Department of Chemistry and Biochemistry Auburn University Auburn Alabama 36849 USA
Department of Chemistry and Biochemistry Florida State University Tallahassee Florida 32306 4390 USA
Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 USA
Department of Chemistry Bethel University St Paul Minnesota 55112 USA
Department of Chemistry Emory University Atlanta Georgia 30322 USA
Department of Chemistry Hacettepe University Ankara 06800 Turkey
Department of Chemistry University of Helsinki P O Box 55 FI 00014 Helsinki Finland
Department of Chemistry Virginia Tech Blacksburg Virginia 24061 USA
Interdisciplinary Center for Scientific Computing Heidelberg University D 69120 Heidelberg Germany
Molecular Sciences Software Institute Blacksburg Virginia 24061 USA
SLAC National Accelerator Laboratory Stanford PULSE Institute Menlo Park California 94025 USA
See more in PubMed
Parrish R. M., Burns L. A., Smith D. G. A., Simmonett A. C., DePrince A. E. III, Hohenstein E. G., Bozkaya U., Sokolov A. Y., Di Remigio R., Richard R. M., Gonthier J. F., James A. M., McAlexander H. R., Kumar A., Saitow M., Wang X., Pritchard B. P., Verma P., Schaefer H. F. III, Patkowski K., King R. A., Valeev E. F., Evangelista F. A., Turney J. M., Crawford T. D., and Sherrill C. D., J. Chem. Theory Comput. 13, 3185 (2017).10.1021/acs.jctc.7b00174 PubMed DOI PMC
Jeziorski B., Moszynski R., and Szalewicz K., Chem. Rev. 94, 1887 (1994).10.1021/cr00031a008 DOI
Szalewicz K., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 254 (2012).10.1002/wcms.86 DOI
Raghavachari K., Trucks G. W., Pople J. A., and Head-Gordon M., Chem. Phys. Lett. 157, 479 (1989).10.1016/s0009-2614(89)87395-6 DOI
Crawford T. D., Sherrill C. D., Valeev E. F., Fermann J. T., King R. A., Leininger M. L., Brown S. T., Janssen C. L., Seidl E. T., Kenny J. P., and Allen W. D., J. Comput. Chem. 28, 1610 (2007).10.1002/jcc.20573 PubMed DOI
Turney J. M., Simmonett A. C., Parrish R. M., Hohenstein E. G., Evangelista F. A., Fermann J. T., Mintz B. J., Burns L. A., Wilke J. J., Abrams M. L., Russ N. J., Leininger M. L., Janssen C. L., Seidl E. T., Allen W. D., Schaefer H. F. III, King R. A., Valeev E. F., Sherrill C. D., and Crawford T. D., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 556 (2012).10.1002/wcms.93 DOI
Thorpe J. H., Lopez C. A., Nguyen T. L., Baraban J. H., Bross D. H., Ruscic B., and Stanton J. F., J. Chem. Phys. 150, 224102 (2019).10.1063/1.5095937 PubMed DOI
Metcalf D. P., Koutsoukas A., Spronk S. A., Claus B. L., Loughney D. A., Johnson S. R., Cheney D. L., and Sherrill C. D., J. Chem. Phys. 152, 074103 (2020).10.1063/1.5142636 PubMed DOI
Rai B. K., Sresht V., Yang Q., Unwalla R., Tu M., Mathiowetz A. M., and Bakken G. A., J. Chem. Inf. Model. 59, 4195 (2019).10.1021/acs.jcim.9b00373 PubMed DOI
Smith D. G. A., Burns L. A., Sirianni D. A., Nascimento D. R., Kumar A., James A. M., Schriber J. B., Zhang T., Zhang B., Abbott A. S., Berquist E. J., Lechner M. H., Cunha L. A., Heide A. G., Waldrop J. M., Takeshita T. Y., Alenaizan A., Neuhauser D., King R. A., Simmonett A. C., Turney J. M., Schaefer H. F. III, Evangelista F. A., DePrince A. E. III, Crawford T. D., Patkowski K., and Sherrill C. D., J. Chem. Theory Comput. 14, 3504 (2018).10.1021/acs.jctc.8b00286 PubMed DOI
Pitoňák M., Neogrády P., Černý J., Grimme S., and Hobza P., ChemPhysChem 10, 282 (2009).10.1002/cphc.200800718 PubMed DOI
Bozkaya U. and Sherrill C. D., J. Chem. Phys. 141, 204105 (2014).10.1063/1.4902226 PubMed DOI
Bozkaya U., J. Chem. Phys. 141, 124108 (2014).10.1063/1.4896235 PubMed DOI
Leininger M. L., Allen W. D., Schaefer H. F. III, and Sherrill C. D., J. Chem. Phys. 112, 9213 (2000).10.1063/1.481764 DOI
Wheeler S. E., Allen W. D., and Schaefer H. F. III, J. Chem. Phys. 128, 074107 (2008).10.1063/1.2828523 PubMed DOI
Lee T. J. and Jayatilaka D., Chem. Phys. Lett. 201, 1 (1993).10.1016/0009-2614(93)85024-i DOI
Szabo A. and Ostlund N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989).
Bozkaya U., J. Chem. Phys. 139, 154105 (2013).10.1063/1.4825041 PubMed DOI
Bozkaya U., J. Chem. Theory Comput. 10, 2041 (2014).10.1021/ct500186j PubMed DOI
Bozkaya U. and Ünal A., J. Phys. Chem. A 122, 4375 (2018).10.1021/acs.jpca.8b01851 PubMed DOI
DePrince A. E. III and Sherrill C. D., J. Chem. Theory Comput. 9, 2687 (2013).10.1021/ct400250u PubMed DOI
Bozkaya U. and Sherrill C. D., J. Chem. Phys. 144, 174103 (2016).10.1063/1.4948318 PubMed DOI
Bozkaya U. and Sherrill C. D., J. Chem. Phys. 147, 044104 (2017).10.1063/1.4994918 PubMed DOI
Christiansen O., Koch H., and Jørgensen P., Chem. Phys. Lett. 243, 409 (1995).10.1016/0009-2614(95)00841-q DOI
Koch H., Christiansen O., Jorgensen P., Sanchez de Merás A. M., and Helgaker T., J. Chem. Phys. 106, 1808 (1997).10.1063/1.473322 DOI
DePrince A. E. III and Sherrill C. D., J. Chem. Theory Comput. 9, 293 (2013).10.1021/ct300780u PubMed DOI
Sosa C., Geertsen J., Trucks G. W., Bartlett R. J., and Franz J. A., Chem. Phys. Lett. 159, 148 (1989).10.1016/0009-2614(89)87399-3 DOI
Klopper W., Noga J., Koch H., and Helgaker T., Theor. Chem. Acc. 97, 164 (1997).10.1007/s002140050250 DOI
Taube A. G. and Bartlett R. J., Collect. Czech. Chem. Commun. 70, 837 (2005).10.1135/cccc20050837 DOI
Landau A., Khistyaev K., Dolgikh S., and Krylov A. I., J. Chem. Phys. 132, 014109 (2010).10.1063/1.3276630 PubMed DOI
Geertsen J., Rittby M., and Bartlett R. J., Chem. Phys. Lett. 164, 57 (1989).10.1016/0009-2614(89)85202-9 DOI
Stanton J. F. and Bartlett R. J., J. Chem. Phys. 98, 7029 (1993).10.1063/1.464746 DOI
Smith C. E., King R. A., and Crawford T. D., J. Chem. Phys. 122, 054110 (2005).10.1063/1.1835953 PubMed DOI
Crawford T. D. and Stephens P. J., J. Phys. Chem. A 112, 1339 (2008).10.1021/jp0774488 PubMed DOI
Kállay M., Nagy P. R., Mester D., Rolik Z., Samu G., Csontos J., Csóka J., Szabó P. B., Gyevi-Nagy L., Hégely B., Ladjánszki I., Szegedy L., Ladóczki B., Petrov K., Farkas M., Mezei P. D., and Ganyecz Á., J. Chem. Phys. 152, 074107 (2020).10.1063/1.5142048 PubMed DOI
Bozkaya U., Turney J. M., Yamaguchi Y., Schaefer H. F. III, and Sherrill C. D., J. Chem. Phys. 135, 104103 (2011).10.1063/1.3631129 PubMed DOI
Bozkaya U., J. Chem. Phys. 135, 224103 (2011).10.1063/1.3665134 PubMed DOI
Bozkaya U. and Sherrill C. D., J. Chem. Phys. 138, 184103 (2013).10.1063/1.4803662 PubMed DOI
Bozkaya U. and Sherrill C. D., J. Chem. Phys. 139, 054104 (2013).10.1063/1.4816628 PubMed DOI
Bozkaya U., J. Chem. Theory Comput. 10, 2371 (2014).10.1021/ct500231c PubMed DOI
Bozkaya U., J. Chem. Theory Comput. 12, 1179 (2016).10.1021/acs.jctc.5b01128 PubMed DOI
Bozkaya U., Phys. Chem. Chem. Phys. 18, 11362 (2016).10.1039/c6cp00164e PubMed DOI
Bozkaya U. and Sherrill C. D., J. Comput. Chem. 39, 351 (2018).10.1002/jcc.25122 PubMed DOI
Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 132, 184111 (2010).10.1063/1.3426316 PubMed DOI
Hohenstein E. G., Parrish R. M., Sherrill C. D., Turney J. M., and Schaefer H. F. III, J. Chem. Phys. 135, 174107 (2011).10.1063/1.3656681 PubMed DOI
Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 133, 014101 (2010).10.1063/1.3451077 PubMed DOI
Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 133, 104107 (2010).10.1063/1.3479400 PubMed DOI
Parrish R. M., Hohenstein E. G., and Sherrill C. D., J. Chem. Phys. 139, 174102 (2013).10.1063/1.4826520 PubMed DOI
Gonthier J. F. and Sherrill C. D., J. Chem. Phys. 145, 134106 (2016).10.1063/1.4963385 PubMed DOI
Hapka M., Żuchowski P. S., Szczęśniak M. M., and Chałasiński G., J. Chem. Phys. 137, 164104 (2012).10.1063/1.4758455 PubMed DOI
Żuchowski P. S., Podeszwa R., Moszyński R., Jeziorski B., and Szalewicz K., J. Chem. Phys. 129, 084101 (2008).10.1063/1.2968556 PubMed DOI
Parrish R. M. and Sherrill C. D., J. Chem. Phys. 141, 044115 (2014).10.1063/1.4889855 PubMed DOI
Parrish R. M., Parker T. M., and Sherrill C. D., J. Chem. Theory Comput. 10, 4417 (2014).10.1021/ct500724p PubMed DOI
Parrish R. M., Gonthier J. F., Corminboeuf C., and Sherrill C. D., J. Chem. Phys. 143, 051103 (2015).10.1063/1.4927575 PubMed DOI
Pople J. A., Head-Gordon M., and Raghavachari K., J. Chem. Phys. 87, 5968 (1987).10.1063/1.453520 DOI
Sherrill C. D. and Schaefer H. F. III, in Advances in Quantum Chemistry, edited by Löwdin P.-O. (Academic Press, New York, 1999), Vol. 34, pp. 143–269.
Olsen J., Roos B. O., Jorgensen P., and Jensen H. J. A., J. Chem. Phys. 89, 2185 (1988).10.1063/1.455063 DOI
Roos B. O., Taylor P. R., and Sigbahn P. E. M., Chem. Phys. 48, 157 (1980).10.1016/0301-0104(80)80045-0 DOI
Ruedenberg K., Schmidt M. W., Gilbert M. M., and Elbert S. T., Chem. Phys. 71, 41 (1982).10.1016/0301-0104(82)87004-3 DOI
Malmqvist P. A., Rendell A., and Roos B. O., J. Phys. Chem. 94, 5477 (1990).10.1021/j100377a011 DOI
White S. R. and Martin R. L., J. Chem. Phys. 110, 4127 (1999).10.1063/1.478295 DOI
Chan G. K.-L. and Head-Gordon M., J. Chem. Phys. 116, 4462 (2002).10.1063/1.1449459 DOI
Wouters S., Bogaerts T., Van Der Voort P., Van Speybroeck V., and Van Neck D., J. Chem. Phys. 140, 241103 (2014).10.1063/1.4885815 PubMed DOI
Wouters S., Van Speybroeck V., and Van Neck D., J. Chem. Phys. 145, 054120 (2016).10.1063/1.4959817 PubMed DOI
Evangelista F. A., Prochnow E., Gauss J., and Schaefer H. F. III, J. Chem. Phys. 132, 074107 (2010).10.1063/1.3305335 PubMed DOI
Evangelista F. A., Simmonett A. C., Schaefer H. F. III, Mukherjee D., and Allen W. D., Phys. Chem. Chem. Phys. 11, 4728 (2009).10.1039/b822910d PubMed DOI
Kállay M., Rolik Z., Csontos J., Ladjánski I., Szegedy L., Ladóczki B., Samu G., Petrov K., Farkas M., Nagy P., Mester D., and Hégely B., MRCC, a quantum chemical program suite, http://www.mrcc.hu.
Schriber J. B., Hannon K. P., Li C., and Evangelista F. A., J. Chem. Theory Comput. 14, 6295 (2018).10.1021/acs.jctc.8b00877 PubMed DOI
Li C. and Evangelista F. A., Annu. Rev. Phys. Chem. 70, 245 (2019).10.1146/annurev-physchem-042018-052416 PubMed DOI
Schriber J. B., Hannon K., Li C., Zhang T., and Evangelista F. A., FORTE: A suite of quantum chemistry methods for strongly correlated electrons. For the current version, see https://github.com/evangelistalab/forte; accessed January 2020.
Fosso-Tande J. and DePrince A. E. III, V2RDM_CASSCF: A variational 2-RDM-driven CASSCF plugin to Psi4. For the current version, see https://github.com/edeprince3/v2rdm_casscf; accessed January 2020.
Kutzelnigg W., J. Chem. Phys. 125, 171101 (2006).10.1063/1.2387955 PubMed DOI
Simmonett A. C., Wilke J. J., Schaefer H. F. III, and Kutzelnigg W., J. Chem. Phys. 133, 174122 (2010).10.1063/1.3503657 PubMed DOI
Sokolov A. Y., Simmonett A. C., and Schaefer H. F. III, J. Chem. Phys. 138, 024107 (2013).10.1063/1.4773580 PubMed DOI
Sokolov A. Y. and Schaefer H. F. III, J. Chem. Phys. 139, 204110 (2013).10.1063/1.4833138 PubMed DOI
Sokolov A. Y., Schaefer H. F. III, and Kutzelnigg W., J. Chem. Phys. 141, 074111 (2014).10.1063/1.4892946 PubMed DOI
Copan A. V., Sokolov A. Y., and Schaefer H. F. III, J. Chem. Theory Comput. 10, 2389 (2014).10.1021/ct5002895 PubMed DOI
Mullinax J. W., Sokolov A. Y., and Schaefer H. F. III, J. Chem. Theory Comput. 11, 2487 (2015).10.1021/acs.jctc.5b00346 PubMed DOI
Sokolov A. Y., Wilke J. J., Simmonett A. C., and Schaefer H. F. III, J. Chem. Phys. 137, 054105 (2012).10.1063/1.4739423 PubMed DOI
Wolf A., Reiher M., and Hess B. A., J. Chem. Phys. 117, 9215 (2002).10.1063/1.1515314 DOI
Reiher M. and Wolf A., J. Chem. Phys. 121, 10945 (2004).10.1063/1.1818681 PubMed DOI
Dyall K. G., J. Chem. Phys. 106, 9618 (1997).10.1063/1.473860 DOI
Dyall K. G., J. Chem. Phys. 115, 9136 (2001).10.1063/1.1413512 DOI
Kutzelnigg W., Chem. Phys. 225, 203 (1997).10.1016/s0301-0104(97)00240-1 DOI
Kutzelnigg W. and Liu W., J. Chem. Phys. 123, 241102 (2005).10.1063/1.2137315 PubMed DOI
Kutzelnigg W. and Liu W., Mol. Phys. 104, 2225 (2006).10.1080/00268970600662481 DOI
Liu W. and Kutzelnigg W., J. Chem. Phys. 126, 114107 (2007).10.1063/1.2710258 PubMed DOI
Liu W. and Peng D., J. Chem. Phys. 131, 031104 (2009).10.1063/1.3159445 PubMed DOI
Iliaš M. and Saue T., J. Chem. Phys. 126, 064102 (2007).10.1063/1.2436882 PubMed DOI
Zou W., Filatov M., and Cremer D., J. Chem. Phys. 134, 244117 (2011).10.1063/1.3603454 PubMed DOI
Cheng L. and Gauss J., J. Chem. Phys. 135, 084114 (2011).10.1063/1.3624397 PubMed DOI
Verma P., Derricotte W. D., and Evangelista F. A., J. Chem. Theory Comput. 12, 144 (2016).10.1021/acs.jctc.5b00817 PubMed DOI
East A. L. L. and Allen W. D., J. Chem. Phys. 99, 4638 (1993).10.1063/1.466062 DOI
Császár A. G., Allen W. D., and Schaefer H. F. III, J. Chem. Phys. 108, 9751 (1998).10.1063/1.476449 DOI
Kraus P. and Frank I., Int. J. Quantum Chem. 119, e25953 (2019).10.1002/qua.25953 DOI
Boys S. F. and Bernardi F., Mol. Phys. 19, 553 (1970).10.1080/00268977000101561 DOI
Wells B. H. and Wilson S., Chem. Phys. Lett. 101, 429 (1983).10.1016/0009-2614(83)87508-3 DOI
Valiron P. and Mayer I., Chem. Phys. Lett. 275, 46 (1997).10.1016/s0009-2614(97)00689-1 DOI
van der Walt S., Colbert S. C., and Varoquaux G., Comput. Sci. Eng. 13, 22 (2011).10.1109/mcse.2011.37 DOI
Smith D. G. A., PSI4NUMPY: Combining PSI4 and NUMPY for education and development. For the current version, see https://github.com/psi4/psi4numpy; accessed January 2020.
Backhouse O. J., Nusspickel M., and Booth G. H., J. Chem. Theory Comput. 16, 1090 (2020).10.1021/acs.jctc.9b01182 PubMed DOI
Grimsley H. R., Economou S. E., Barnes E., and Mayhall N. J., Nat. Commun. 10, 3007 (2019).10.1038/s41467-019-10988-2 PubMed DOI PMC
Kodrycka M., Holzer C., Klopper W., and Patkowski K., J. Chem. Theory Comput. 15, 5965 (2019).10.1021/acs.jctc.9b00547 PubMed DOI
Claudino D. and Mayhall N. J., J. Chem. Theory Comput. 15, 6085 (2019).10.1021/acs.jctc.9b00682 PubMed DOI
Derricotte W. D., J. Phys. Chem. A 123, 7881 (2019).10.1021/acs.jpca.9b06865 PubMed DOI
Zhang T., Li C., and Evangelista F. A., J. Chem. Theory Comput. 15, 4399 (2019).10.1021/acs.jctc.9b00353 PubMed DOI
Waldrop J. M. and Patkowski K., J. Chem. Phys. 150, 074109 (2019).10.1063/1.5086079 PubMed DOI
Rackers J. A. and Ponder J. W., J. Chem. Phys. 150, 084104 (2019).10.1063/1.5081060 PubMed DOI PMC
Sauceda H. E., Chmiela S., Poltavsky I., Müller K.-R., and Tkatchenko A., J. Chem. Phys. 150, 114102 (2019).10.1063/1.5078687 PubMed DOI
Margraf J. T., Kunkel C., and Reuter K., J. Chem. Phys. 150, 244116 (2019).10.1063/1.5094788 PubMed DOI
Crawford T. D., Kumar A., Bazanté A. P., and Di Remigio R., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 9, e1406 (2019).10.1002/wcms.1406 DOI
Zanchi C., Longhi G., Abbate S., Pellegrini G., Biagioni P., and Tommasini M., Appl. Sci. 9, 4691 (2019).10.3390/app9214691 DOI
Herbst M. F., Scheurer M., Fransson T., Rehn D. R., and Dreuw A., “adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods,” WIREs Comput. Mol. Sci. (published online, 2020).10.1002/wcms.1462 DOI
Rinkevicius Z., Li X., Vahtras O., Ahmadzadeh K., Brand M., Ringholm M., List N. H., Scheurer M., Scott M., Dreuw A., and Norman P., “VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments,” WIREs Comput. Mol. Sci. (published online, 2020).10.1002/wcms.1457 DOI
Alenaizan A., Burns L. A., and Sherrill C. D., Int. J. Quantum Chem. 120, e26035 (2020).10.1002/qua.26035 DOI
Houck S. E. and Mayhall N. J., J. Chem. Theory Comput. 15, 2278 (2019).10.1021/acs.jctc.8b01268 PubMed DOI
Townsend J. and Vogiatzis K. D., J. Phys. Chem. Lett. 10, 4129 (2019).10.1021/acs.jpclett.9b01442 PubMed DOI
Kluyver T., Ragan-Kelley B., Pérez F., Granger B., Bussonnier M., Frederic J., Kelley K., Hamrick J., Grout J., Corlay S., Ivanov P., Avila D., Abdalla S., and Willing C., in Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by Loizides F. and Schmidt B. (IOS Press, 2016), pp. 87–90.
Krylov A., Windus T. L., Barnes T., Marin-Rimoldi E., Nash J. A., Pritchard B., Smith D. G. A., Altarawy D., Saxe P., Clementi C., Crawford T. D., Harrison R. J., Jha S., Pande V. S., and Head-Gordon T., J. Chem. Phys. 149, 180901 (2018).10.1063/1.5052551 PubMed DOI
Smith D. G. A., Burns L. A., Altarawy D., Naden L., and Welborn M., QCARCHIVE: A central source to compile, aggregate, query, and share quantum chemistry data, https://qcarchive.molssi.org; accessed January 2020.
Smith D. G. A., Altarawy D., Burns L. A., Welborn M., Naden L. N., Ward L., and Ellis S., “The {MolSSI} {QCArchive} Project: An open-source platform to compute, organize, and share quantum chemistry data,” WIREs Comput. Mol. Sci. (unpublished) (2020).
Fortenberry R. C., McDonald A. R., Shepherd T. D., Kennedy M., and Sherrill C. D., in The Promise of Chemical Education: Addressing Our Students’ Needs, edited by Daus K. and Rigsby R. (American Chemical Society, Washington, DC, 2015), Vol. 1193, pp. 85–98.
Sirianni D. A., Alenaizan A., Cheney D. L., and Sherrill C. D., J. Chem. Theory Comput. 14, 3004 (2018).10.1021/acs.jctc.8b00114 PubMed DOI
Burns L. A., Faver J. C., Zheng Z., Marshall M. S., Smith D. G. A., Vanommeslaeghe K., MacKerell A. D., Merz K. M., and Sherrill C. D., J. Chem. Phys. 147, 161727 (2017).10.1063/1.5001028 PubMed DOI PMC
Smith D. G. A., de Jong B., Burns L. A., Hutchison G., and Hanwell M. D., QCSCHEMA: A schema for quantum chemistry. For the current version, see https://github.com/MolSSI/QCSchema; accessed January 2020.
Smith D. G. A., Burns L. A., Naden L., and Welborn M., QCELEMENTAL: Periodic table, physical constants, and molecule parsing for quantum chemistry. For the current version, see https://github.com/MolSSI/QCElemental; accessed January 2020.
Smith D. G. A., Lee S., Burns L. A., and Welborn M., QCENGINE: Quantum chemistry program executor and IO standardizer (QCSchema). For the current version, see https://github.com/MolSSI/QCEngine; accessed January 2020.
Smith D. G. A., Welborn M., Altarawy D., and Naden L., QCFRACTAL: A distributed compute and database platform for quantum chemistry. For the current version, see https://github.com/MolSSI/QCFractal; accessed January 2020.
Kenny J. P., Janssen C. L., Valeev E. F., and Windus T. L., J. Comput. Chem. 29, 562 (2008).10.1002/jcc.20815 PubMed DOI
Naoki I., MESSAGEPACK-PYTHON: MessagePack serializer implementation for Python. For the current version, see https://github.com/msgpack/msgpack-python; accessed January 2020. For the originating project, see https://msgpack.org/.
Lehtola S., Steigemann C., Oliveira M. J., and Marques M. A., SoftwareX 7, 1 (2018).10.1016/j.softx.2017.11.002 DOI
Mardirossian N. and Head-Gordon M., J. Chem. Phys. 144, 214110 (2016).10.1063/1.4952647 PubMed DOI
Sun J., Ruzsinszky A., and Perdew J. P., Phys. Rev. Lett. 115, 036402 (2015).10.1103/physrevlett.115.036402 PubMed DOI
Jurečka P., Šponer J., Černý J., and Hobza P., Phys. Chem. Chem. Phys. 8, 1985 (2006).10.1039/b600027d PubMed DOI
Řezáč J. and Hobza P., J. Chem. Theory Comput. 9, 2151 (2013).10.1021/ct400057w PubMed DOI
Sure R. and Grimme S., J. Comput. Chem. 34, 1672 (2013).10.1002/jcc.23317 PubMed DOI
Grimme S., Brandenburg J. G., Bannwarth C., and Hansen A., J. Chem. Phys. 143, 054107 (2015).10.1063/1.4927476 PubMed DOI
Grimme S., Antony J., Ehrlich S., and Krieg H., DFTD3: Dispersion correction for DFT, Hartree–Fock, and semi-empirical quantum chemical methods. For the current version, see https://github.com/loriab/dftd3; accessed January 2020. For the originating project, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3.
Kruse H. and Grimme S., GCP: Geometrical counterpoise correction for DFT and Hartree–Fock quantum chemical methods. For the current version, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp; accessed January 2020.
Grimme S., J. Comput. Chem. 27, 1787 (2006).10.1002/jcc.20495 PubMed DOI
Grimme S., Antony J., Ehrlich S., and Krieg H., J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344 PubMed DOI
Smith D. G. A., Burns L. A., Patkowski K., and Sherrill C. D., J. Phys. Chem. Lett. 7, 2197 (2016).10.1021/acs.jpclett.6b00780 PubMed DOI
Řezáč J., Greenwell C., and Beran G. J. O., J. Chem. Theory Comput. 14, 4711 (2018).10.1021/acs.jctc.8b00548 PubMed DOI
Greenwell C., MP2D: A program for calculating the MP2D dispersion energy. For the current version, see https://github.com/Chandemonium/MP2D; accessed January 2020.
Hujo W. and Grimme S., J. Chem. Theory Comput. 7, 3866 (2011).10.1021/ct200644w PubMed DOI
Sirianni D. A., Smith D. G. A., Burns L. A., Sitkoff D. F., Cheney D. L., and Sherrill C. D., “Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory” (unpublished). PubMed
Warne T., Edwards P. C., Doré A. S., Leslie A. G. W., and Tate C. G., Science 364, 775 (2019).10.1126/science.aau5595 PubMed DOI PMC
Misquitta A. J., Podeszwa R., Jeziorski B., and Szalewicz K., J. Chem. Phys. 123, 214103 (2005).10.1063/1.2135288 PubMed DOI
Heßelmann A., Jansen G., and Schütz M., J. Chem. Phys. 122, 014103 (2005).10.1063/1.1824898 PubMed DOI
Williams H. L. and Chabalowski C. F., J. Phys. Chem. A 105, 646 (2001).10.1021/jp003883p DOI
Grüning M., Gritsenko O. V., van Gisbergen S. J. A., and Baerends E. J., J. Chem. Phys. 114, 652 (2001).10.1063/1.1327260 DOI
Hesselmann A. and Jansen G., Chem. Phys. Lett. 367, 778 (2003).10.1016/s0009-2614(02)01796-7 DOI
Podeszwa R., Bukowski R., and Szalewicz K., J. Chem. Theory Comput. 2, 400 (2006).10.1021/ct050304h PubMed DOI
Bukowski R., Podeszwa R., and Szalewicz K., Chem. Phys. Lett. 414, 111 (2005).10.1016/j.cplett.2005.08.048 DOI
Jansen G., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 127 (2014).10.1002/wcms.1164 DOI
Schäffer R. and Jansen G., Theor. Chem. Acc. 131, 1235 (2012).10.1007/s00214-012-1235-6 DOI
Schäffer R. and Jansen G., Mol. Phys. 111, 2570 (2013).10.1080/00268976.2013.827253 DOI
Patkowski K., WIREs Comput. Mol. Sci. 10, e1452 (2020).10.1002/wcms.1452 DOI
Lao K. U., Schäffer R., Jansen G., and Herbert J. M., J. Chem. Theory Comput. 11, 2473 (2015).10.1021/ct5010593 PubMed DOI
Parker T. M., Burns L. A., Parrish R. M., Ryno A. G., and Sherrill C. D., J. Chem. Phys. 140, 094106 (2014).10.1063/1.4867135 PubMed DOI
Patkowski K., Żuchowski P. S., and Smith D. G. A., J. Chem. Phys. 148, 164110 (2018).10.1063/1.5021891 PubMed DOI
Valeev E. F. and Fermann J. T., LIBINT: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. For the current version, see https://github.com/evaleev/libint/tree/v1; accessed January 2020.
Valeev E. F., LIBINT: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. For the current version, see https://github.com/evaleev/libint; accessed January 2020. For the originating project, see http://libint.valeyev.net/.
Pritchard B. P. and Chow E., J. Comput. Chem. 37, 2537 (2016).10.1002/jcc.24483 PubMed DOI
Huang H. and Chow E., in SC18: The International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE Press, 2018), pp. 1–14. PubMed
Almlöf J., K. Faegri, Jr., and Korsell K., J. Comput. Chem. 3, 385 (1982).10.1002/jcc.540030314 DOI
Van Lenthe J. H., Zwaans R., Van Dam H. J. J., and Guest M. F., J. Comput. Chem. 27, 926 (2006).10.1002/jcc.20393 PubMed DOI
Wolfsberg M. and Helmholz L., J. Chem. Phys. 20, 837 (1952).10.1063/1.1700580 DOI
Lehtola S., J. Chem. Theory Comput. 15, 1593 (2019).10.1021/acs.jctc.8b01089 PubMed DOI PMC
Lehtola S., Int. J. Quantum Chem. 119, e25945 (2019).10.1002/qua.25944 DOI
Lehtola S., Phys. Rev. A 101, 012516 (2020).10.1103/physreva.101.012516 DOI
Lehtola S., J. Chem. Phys. 151, 241102 (2019).10.1063/1.5139948 PubMed DOI
Lehtola S., Phys. Rev. A 101, 032504 (2020).10.1103/physreva.101.032504 DOI
Dreuw A. and Head-Gordon M., Chem. Rev. 105, 4009 (2005).10.1021/cr0505627 PubMed DOI
Stratmann R. E., Scuseria G. E., and Frisch M. J., J. Chem. Phys. 109, 8218 (1998).10.1063/1.477483 DOI
Davidson E. R., J. Comput. Phys. 17, 87 (1975).10.1016/0021-9991(75)90065-0 DOI
Norman P., Ruud K., and Saue T., Principles and Practices of Molecular Properties: Theory, Modeling, and Simulations (John Wiley & Sons, 2018).
Marques M., Lehtola S., Oliveira M., Andrade X., and Strubbe D., LIBXC: A library of exchange-correlation functionals for density-functional theory. For the current version, see https://gitlab.com/libxc/libxc; accessed January 2020.
Smith D. G. A., Burns L. A., and Simmonett A. C., GAU2GRID: Fast computation of a gaussian and its derivative on a grid. For the current version, see https://github.com/dgasmith/gau2grid; accessed January 2020.
Wolf A., Reiher M., and Hess B. A., DKH: Wolf, Reiher, and Hess’s Douglas-Kroll-Hess relativistic correction. For the current version, see https://github.com/psi4/dkh; accessed January 2020. For originating project, see http://www.reiher.ethz.ch/software/dkh-x2c.html.
Kaliman I., LIBEFP: Parallel implementation of the effective fragment potential method. For the current version, see https://github.com/ilyak/libefp; accessed January 2020. PubMed
Kaliman I. A. and Slipchenko L. V., J. Comput. Chem. 34, 2284 (2013).10.1002/jcc.23375 PubMed DOI
Stone A. J., GDMA: A program to perform distributed multipole analysis. For the current version, see https://github.com/psi4/gdma; accessed January 2020. For originating project, see http://www-stone.ch.cam.ac.uk/programs.html.
Stone A. J., J. Chem. Theory Comput. 1, 1128 (2005).10.1021/ct050190+ PubMed DOI
Wouters S., CHEMPS2: A spin-adapted implementation of DMRG for ab initio quantum chemistry. For the current version, see https://github.com/SebWouters/CheMPS2; accessed January 2020.
Wouters S., Poelmans W., Ayers P. W., and Van Neck D., Comput. Phys. Commun. 185, 1501 (2014).10.1016/j.cpc.2014.01.019 DOI
Wouters S. and Van Neck D., Eur. Phys. J. D 68, 272 (2014).10.1140/epjd/e2014-50500-1 DOI
Remigio R. D. and Frediani L., PCMSOLVER: An API for the polarizable continuum model. For the current version, see https://github.com/PCMSolver/pcmsolver; accessed January 2020.
Di Remigio R., Mozgawa K., Cao H., Weijo V., and Frediani L., J. Chem. Phys. 144, 124103 (2016).10.1063/1.4943782 PubMed DOI
Flocke N. and Lotrich V., ERD: ACESIII electron repulsion integrals. For the current version, see https://github.com/psi4/erd; accessed January 2020. For originating project, see http://www.qtp.ufl.edu/Aces/.
Flocke N. and Lotrich V., J. Comput. Chem. 29, 2722 (2008).10.1002/jcc.21018 PubMed DOI
Pritchard B. P. and Chow E., SIMINT: A code generator for vectorized integrals. For the current version, see https://github.com/simint-chem/simint-generator; accessed January 2020.
Turney J. M., AMBIT: A C++ library for the implementation of tensor product calculations through a clean, concise user interface. For the current version, see https://github.com/jturney/ambit; accessed January 2020.
Burns L. A., PYLIBEFP: A python wrapper to libefp library for effective fragment potentials. For the current version, see https://github.com/loriab/pylibefp; accessed January 2020.
Scheurer M., CPPE: C++ and Python library for polarizable embedding. For the current version, see https://github.com/maxscheurer/cppe; accessed January 2020.
Scheurer M., Reinholdt P., Kjellgren E. R., Haugaard Olsen J. M., Dreuw A., and Kongsted J., J. Chem. Theory Comput. 15, 6154 (2019).10.1021/acs.jctc.9b00758 PubMed DOI
Herbst M. F. and Scheurer M., ADCC: Seamlessly connect your program to ADC. For the current version, see https://github.com/adc-connect/adcc; accessed January 2020.
Fosso-Tande J., Nguyen T.-S., Gidofalvi G., and DePrince A. E. III, J. Chem. Theory Comput. 12, 2260 (2016).10.1021/acs.jctc.6b00190 PubMed DOI
Deustua J. E., Shen J., and Piecuch P., CCT3: A PSI4 plugin which performs active-space coupled-cluster CCSDt calculations and which can determine noniterative corrections to CCSDt defining the CC(t;3) approach. For the current version, see https://github.com/piecuch-group/psi4_cct3; accessed January 2020.
Shen J. and Piecuch P., Chem. Phys. 401, 180 (2012).10.1016/j.chemphys.2011.11.033 DOI
Shen J. and Piecuch P., J. Chem. Phys. 136, 144104 (2012).10.1063/1.3700802 PubMed DOI
DePrince A. E. III, GPU_DFCC: GPU-accelerated coupled cluster with density fitting. For the current version, see https://github.com/edeprince3/gpu_dfcc; accessed January 2020.
DePrince A. E. III, Kennedy M. R., Sumpter B. G., and Sherrill C. D., Mol. Phys. 112, 844 (2014).10.1080/00268976.2013.874599 DOI
Schmidt J. R., and Polik W. F., WebMO 17, WebMO, LLC, Holland, MI, 2016, http://www.webmo.net.
Schaftenaar G. and Noordik J. H., MOLDEN: A pre- and post-processing program for molecular and electronic structures. For the current version, see ftp://ftp.cmbi.umcn.nl/pub/molgraph/molden; accessed January 2020. PubMed
Schaftenaar G. and Noordik J. H., J. Comput.-Aided Mol. Des. 14, 123 (2000).10.1023/a:1008193805436 PubMed DOI
Nikolaienko T. Y., JANPA: A cross-platform open-source implementation of NPA and other electronic structure analysis methods with Java. For the current version, see http://janpa.sourceforge.net; accessed January 2020.
Nikolaienko T. Y., Bulavin L. A., and Hovorun D. M., Comput. Theor. Chem. 1050, 15 (2014).10.1016/j.comptc.2014.10.002 DOI
Ringer McDonald A., Magers D. B., Heidar-Zadeh F., Shepherd T., and Chavez V. H., PSI4EDUCATION: Teaching chemistry through computation. For the current version, see https://github.com/Psi4Education/psi4education; accessed January 2020.
Zott M., PSIOMM: An interface between PSI4 and OpenMM. For the current version, see https://github.com/mzott/Psi4-OpenMM-Interface; accessed January 2020.
Doerr S., Damas J. M., and Galvelis R., HTMD: Programming Environment for Molecular Discovery. For the current version, see https://github.com/Acellera/htmd and https://github.com/Acellera/parameterize; accessed January 2020.
Doerr S., Harvey M. J., Noé F., and De Fabritiis G., J. Chem. Theory Comput. 12, 1845 (2016).10.1021/acs.jctc.6b00049 PubMed DOI
Galvelis R., Doerr S., Damas J. M., Harvey M. J., and De Fabritiis G., J. Chem. Inf. Model. 59, 3485 (2019).10.1021/acs.jcim.9b00439 PubMed DOI
Buch I., Harvey M. J., Giorgino T., Anderson D. P., and De Fabritiis G., GPUGRID: Volunteer computing for biomedicine. For the current version, see http://gpugrid.net/; accessed January 2020.
Buch I., Harvey M. J., Giorgino T., Anderson D. P., and De Fabritiis G., J. Chem. Inf. Model. 50, 397 (2010).10.1021/ci900455r PubMed DOI
Derricotte W., PYREX: A reaction energy extension for ab initio quantum chemistry. For the current version, see https://github.com/WDerricotte/pyrex; accessed January 2020.
McGibbon R. T., SNS-MP2: Spin-network-scaled MP2. For the current version, see https://github.com/DEShawResearch/sns-mp2; accessed January 2020.
McGibbon R. T., Taube A. G., Donchev A. G., Siva K., Hernández F., Hargus C., Law K.-H., Klepeis J. L., and Shaw D. E., J. Chem. Phys. 147, 161725 (2017).10.1063/1.4986081 PubMed DOI
Alenaizan A., RESP: A restrained electrostatic potential (RESP) plugin to PSI4. For the current version, see https://github.com/cdsgroup/resp; accessed January 2020.
Marques M., Hu S., Chen R., and Wood S., QISKIT-AQUA: Quantum algorithms and applications in Python. For the current version, see https://github.com/Qiskit/qiskit-aqua; accessed January 2020.
Granade C. and Paz A., QUANTUM: Microsoft Quantum Development Kit Samples. For the current version, see https://github.com/microsoft/Quantum; accessed January 2020.
Borca C. H., CRYSTALATTE: Automating the calculation of crystal lattice energies. For the current version, see https://github.com/carlosborca/CrystaLattE; accessed January 2020.
Borca C. H., Bakr B. W., Burns L. A., and Sherrill C. D., J. Chem. Phys. 151, 144103 (2019).10.1063/1.5120520 PubMed DOI
Babbush R., OPENFERMION: OpenFermion plugin to interface with the electronic structure package Psi4. For the current version, see https://github.com/quantumlib/OpenFermion; accessed January 2020.
McClean J. R., Sung K. J., Kivlichan I. D., Cao Y., Dai C., Fried E. S., Gidney C., Gimby B., Gokhale P., Häner T., Hardikar T., Havlíček V., Higgott O., Huang C., Izaac J., Jiang Z., Liu X., McArdle S., Neeley M., O’Brien T., O’Gorman B., Ozfidan I., Radin M. D., Romero J., Rubin N., Sawaya N. P. D., Setia K., Sim S., Steiger D. S., Steudtner M., Sun Q., Sun W., Wang D., Zhang F., and Babbush R., “OpenFermion: The electronic structure package for quantum computers,” arXiv:1710.07629 [quant-ph] (2017).
Sung K. J. and Babbush R., OPENFERMION-PSI4: The electronic structure package for quantum computers. For the current version, see https://github.com/quantumlib/OpenFermion-Psi4; accessed January 2020.
Burns L. A., Lolinco A., and Glick Z., QCDB: Quantum chemistry common driver and databases. For the current version, see https://github.com/qcdb/qcdb; accessed January 2020.
Heide A. and King R. A., OPTKING: A Python version of the PSI4 geometry optimizer. For the current version, see https://github.com/psi-rking/optking; accessed January 2020.
Ehlert C., PSIXAS: A Psi4 plugin for X-ray absorption spectra (XPS, NEXAFS, PP-NEXAFS). For the current version, see https://github.com/Masterluke87/psixas; accessed January 2020. PubMed
Houck S. and Mayhall N., FOCKCI: A quick PSI4 implementation of SF-IP/EA. For the current version, see https://github.com/shannonhouck/psi4fockci; accessed January 2020.
Larsen A. H. and Mortensen J. J., ASE: Atomic Simulation Environment: A Python library for working with atoms. For the current version, see https://gitlab.com/ase/ase; accessed January 2020. PubMed
Larsen A. H., Mortensen J. J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Jensen P. B., Kermode J., Kitchin J. R., Kolsbjerg E. L., Kubal J., Kaasbjerg K., Lysgaard S., Maronsson J. B., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., and Jacobsen K. W., J. Phys.: Condens. Matter 29, 273002 (2017).10.1088/1361-648x/aa680e PubMed DOI
Ceriotti M., Hirshberg B., and Kapil V., I-PI: A universal force engine. For the current version, see https://github.com/i-pi/i-pi; accessed January 2020.
Kapil V., Rossi M., Marsalek O., Petraglia R., Litman Y., Spura T., Cheng B., Cuzzocrea A., Meißner R. H., Wilkins D. M., Helfrecht B. A., Juda P., Bienvenue S. P., Fang W., Kessler J., Poltavsky I., Vandenbrande S., Wieme J., Corminboeuf C., Kühne T. D., Manolopoulos D. E., Markland T. E., Richardson J. O., Tkatchenko A., Tribello G. A., Van Speybroeck V., and Ceriotti M., Comput. Phys. Commun. 236, 214 (2019).10.1016/j.cpc.2018.09.020 DOI
Barnes T. A., MDI: A library that enables code interoperability via the MolSSI Driver Interface. For the current version, see https://github.com/MolSSI/MDI_Library; accessed January 2020. Also, 10.5281/zenodo.3659285. DOI
Wang L.-P., Smith D. G. A., and Qiu Y., GEOMETRIC: A geometry optimization code that includes the TRIC coordinate system. For the current version, see https://github.com/leeping/geomeTRIC; accessed January 2020.
Wang L.-P. and Song C., J. Chem. Phys. 144, 214108 (2016).10.1063/1.4952956 PubMed DOI
Banerjee A., Jensen J. O., and Simons J., J. Chem. Phys. 82, 4566 (1985).10.1063/1.448713 DOI
Jensen J. O., Banerjee A., and Simons J., Chem. Phys. 102, 45 (1986).10.1016/0301-0104(86)85116-3 DOI
Gordon M. S., Freitag M. A., Bandyopadhyay P., Jensen J. H., Kairys V., and Stevens W. J., J. Phys. Chem. A 105, 293 (2001).10.1021/jp002747h DOI
Ghosh D., Kosenkov D., Vanovschi V., Williams C. F., Herbert J. M., Gordon M. S., Schmidt M. W., Slipchenko L. V., and Krylov A. I., J. Phys. Chem. A 114, 12739 (2010).10.1021/jp107557p PubMed DOI PMC
Schirmer J., Phys. Rev. A 26, 2395 (1982).10.1103/physreva.26.2395 DOI
Trofimov A. B., Krivdina I. L., Weller J., and Schirmer J., Chem. Phys. 329, 1 (2006).10.1016/j.chemphys.2006.07.015 DOI
Dreuw A. and Wormit M., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5, 82 (2015).10.1002/wcms.1206 DOI
Olsen J. M., Aidas K., and Kongsted J., J. Chem. Theory Comput. 6, 3721 (2010).10.1021/ct1003803 PubMed DOI
Olsen J. M. H. and Kongsted J., “Chapter 3: Molecular properties through polarizable embedding,” in Advances in Quantum Chemistry, edited by Sabin J. R. and Brändas E. (Academic Press, 2011), Vol. 61, pp. 107–143.
Mazziotti D. A., Phys. Rev. A 65, 062511 (2002).10.1103/physreva.65.062511 PubMed DOI
Gidofalvi G. and Mazziotti D. A., J. Chem. Phys. 129, 134108 (2008).10.1063/1.2983652 PubMed DOI
Maradzike E., Gidofalvi G., Turney J. M., Schaefer H. F. III, and DePrince A. E. III, J. Chem. Theory Comput. 13, 4113 (2017).10.1021/acs.jctc.7b00366 PubMed DOI
Piecuch P., Mol. Phys. 108, 2987 (2010).10.1080/00268976.2010.522608 DOI
Oliphant N. and Adamowicz L., J. Chem. Phys. 96, 3739 (1992).10.1063/1.461878 DOI
Piecuch P., Oliphant N., and Adamowicz L., J. Chem. Phys. 99, 1875 (1993).10.1063/1.466179 DOI
Piecuch P., Kucharski S. A., and Bartlett R. J., J. Chem. Phys. 110, 6103 (1999).10.1063/1.478517 DOI
Piecuch P. and Włoch M., J. Chem. Phys. 123, 224105 (2005).10.1063/1.2137318 PubMed DOI
Piecuch P., Włoch M., Gour J. R., and Kinal A., Chem. Phys. Lett. 418, 467 (2006).10.1016/j.cplett.2005.10.116 DOI
Wloch M., Gour J. R., and Piecuch P., J. Phys. Chem. A 111, 11359 (2007).10.1021/jp072535l PubMed DOI
See https://openforcefield.org for OpenForceField.
Wu J. C., Chattree G., and Ren P., Theor. Chem. Acc. 131, 1138 (2012).10.1007/s00214-012-1138-6 PubMed DOI PMC
McDaniel J. G. and Schmidt J., Annu. Rev. Phys. Chem. 67, 467 (2016).10.1146/annurev-physchem-040215-112047 PubMed DOI
Rackers J. A., Liu C., Ren P., and Ponder J. W., J. Chem. Phys. 149, 084115 (2019).10.1063/1.5030434 PubMed DOI PMC
Liu C., Piquemal J.-P., and Ren P., J. Chem. Theory Comput. 15, 4122 (2019).10.1021/acs.jctc.9b00261 PubMed DOI PMC
Bayly C. I., Cieplak P., Cornell W. D., and Kollman P. A., J. Phys. Chem. 97, 10269 (1993).10.1021/j100142a004 DOI
Franz K., Schnell I., Meurer A., and Sarahan M., CONDA: OS-agnostic, system-level binary package manager and ecosystem. For the current version, see https://github.com/conda/conda; accessed January 2020. For documentation, see https://conda.io/en/latest/.
Sarahan M., Meurer A., Donnelly R., and Schnell I., CONDA-BUILD: Commands and tools for building conda packages. For the current version, see https://github.com/conda/conda-build; accessed January 2020.
Computational Design of Photosensitive Polymer Templates To Drive Molecular Nanofabrication
Influence of nuclear dynamics on molecular attosecond photoelectron interferometry
Visualization of π-hole in molecules by means of Kelvin probe force microscopy