• This record comes from PubMed

Psi4 1.4: Open-source software for high-throughput quantum chemistry

. 2020 May 14 ; 152 (18) : 184108.

Status PubMed-not-MEDLINE Language English Country United States Media print

Document type Journal Article

PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.

Acellera Labs C Doctor Trueta 183 08005 Barcelona Spain

ARC Centre of Excellence in Exciton Science School of Science RMIT University Melbourne VIC 3000 Australia

Center for Computational Molecular Science and Technology School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 0400 USA

Center for Computational Quantum Chemistry University of Georgia Athens Georgia 30602 USA

Department of Chemistry and Biochemistry Auburn University Auburn Alabama 36849 USA

Department of Chemistry and Biochemistry Florida State University Tallahassee Florida 32306 4390 USA

Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 USA

Department of Chemistry Bethel University St Paul Minnesota 55112 USA

Department of Chemistry Centre for Theoretical and Computational Chemistry UiT The Arctic University of Norway N 9037 Tromsø Norway

Department of Chemistry Emory University Atlanta Georgia 30322 USA

Department of Chemistry Hacettepe University Ankara 06800 Turkey

Department of Chemistry University of Helsinki P O Box 55 FI 00014 Helsinki Finland

Department of Chemistry Virginia Tech Blacksburg Virginia 24061 USA

Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 612 65 Brno Czech Republic

Interdisciplinary Center for Scientific Computing Heidelberg University D 69120 Heidelberg Germany

Molecular Sciences Software Institute Blacksburg Virginia 24061 USA

National Institutes of Health National Heart Lung and Blood Institute Laboratory of Computational Biology Bethesda Maryland 20892 USA

School of Molecular and Life Sciences Curtin University Kent St Bentley Perth Western Australia 6102 Australia

SLAC National Accelerator Laboratory Stanford PULSE Institute Menlo Park California 94025 USA

See more in PubMed

Parrish R. M., Burns L. A., Smith D. G. A., Simmonett A. C., DePrince A. E. III, Hohenstein E. G., Bozkaya U., Sokolov A. Y., Di Remigio R., Richard R. M., Gonthier J. F., James A. M., McAlexander H. R., Kumar A., Saitow M., Wang X., Pritchard B. P., Verma P., Schaefer H. F. III, Patkowski K., King R. A., Valeev E. F., Evangelista F. A., Turney J. M., Crawford T. D., and Sherrill C. D., J. Chem. Theory Comput. 13, 3185 (2017).10.1021/acs.jctc.7b00174 PubMed DOI PMC

Jeziorski B., Moszynski R., and Szalewicz K., Chem. Rev. 94, 1887 (1994).10.1021/cr00031a008 DOI

Szalewicz K., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 254 (2012).10.1002/wcms.86 DOI

Raghavachari K., Trucks G. W., Pople J. A., and Head-Gordon M., Chem. Phys. Lett. 157, 479 (1989).10.1016/s0009-2614(89)87395-6 DOI

Crawford T. D., Sherrill C. D., Valeev E. F., Fermann J. T., King R. A., Leininger M. L., Brown S. T., Janssen C. L., Seidl E. T., Kenny J. P., and Allen W. D., J. Comput. Chem. 28, 1610 (2007).10.1002/jcc.20573 PubMed DOI

Turney J. M., Simmonett A. C., Parrish R. M., Hohenstein E. G., Evangelista F. A., Fermann J. T., Mintz B. J., Burns L. A., Wilke J. J., Abrams M. L., Russ N. J., Leininger M. L., Janssen C. L., Seidl E. T., Allen W. D., Schaefer H. F. III, King R. A., Valeev E. F., Sherrill C. D., and Crawford T. D., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 556 (2012).10.1002/wcms.93 DOI

Thorpe J. H., Lopez C. A., Nguyen T. L., Baraban J. H., Bross D. H., Ruscic B., and Stanton J. F., J. Chem. Phys. 150, 224102 (2019).10.1063/1.5095937 PubMed DOI

Metcalf D. P., Koutsoukas A., Spronk S. A., Claus B. L., Loughney D. A., Johnson S. R., Cheney D. L., and Sherrill C. D., J. Chem. Phys. 152, 074103 (2020).10.1063/1.5142636 PubMed DOI

Rai B. K., Sresht V., Yang Q., Unwalla R., Tu M., Mathiowetz A. M., and Bakken G. A., J. Chem. Inf. Model. 59, 4195 (2019).10.1021/acs.jcim.9b00373 PubMed DOI

Smith D. G. A., Burns L. A., Sirianni D. A., Nascimento D. R., Kumar A., James A. M., Schriber J. B., Zhang T., Zhang B., Abbott A. S., Berquist E. J., Lechner M. H., Cunha L. A., Heide A. G., Waldrop J. M., Takeshita T. Y., Alenaizan A., Neuhauser D., King R. A., Simmonett A. C., Turney J. M., Schaefer H. F. III, Evangelista F. A., DePrince A. E. III, Crawford T. D., Patkowski K., and Sherrill C. D., J. Chem. Theory Comput. 14, 3504 (2018).10.1021/acs.jctc.8b00286 PubMed DOI

Pitoňák M., Neogrády P., Černý J., Grimme S., and Hobza P., ChemPhysChem 10, 282 (2009).10.1002/cphc.200800718 PubMed DOI

Bozkaya U. and Sherrill C. D., J. Chem. Phys. 141, 204105 (2014).10.1063/1.4902226 PubMed DOI

Bozkaya U., J. Chem. Phys. 141, 124108 (2014).10.1063/1.4896235 PubMed DOI

Leininger M. L., Allen W. D., Schaefer H. F. III, and Sherrill C. D., J. Chem. Phys. 112, 9213 (2000).10.1063/1.481764 DOI

Wheeler S. E., Allen W. D., and Schaefer H. F. III, J. Chem. Phys. 128, 074107 (2008).10.1063/1.2828523 PubMed DOI

Lee T. J. and Jayatilaka D., Chem. Phys. Lett. 201, 1 (1993).10.1016/0009-2614(93)85024-i DOI

Szabo A. and Ostlund N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989).

Bozkaya U., J. Chem. Phys. 139, 154105 (2013).10.1063/1.4825041 PubMed DOI

Bozkaya U., J. Chem. Theory Comput. 10, 2041 (2014).10.1021/ct500186j PubMed DOI

Bozkaya U. and Ünal A., J. Phys. Chem. A 122, 4375 (2018).10.1021/acs.jpca.8b01851 PubMed DOI

DePrince A. E. III and Sherrill C. D., J. Chem. Theory Comput. 9, 2687 (2013).10.1021/ct400250u PubMed DOI

Bozkaya U. and Sherrill C. D., J. Chem. Phys. 144, 174103 (2016).10.1063/1.4948318 PubMed DOI

Bozkaya U. and Sherrill C. D., J. Chem. Phys. 147, 044104 (2017).10.1063/1.4994918 PubMed DOI

Christiansen O., Koch H., and Jørgensen P., Chem. Phys. Lett. 243, 409 (1995).10.1016/0009-2614(95)00841-q DOI

Koch H., Christiansen O., Jorgensen P., Sanchez de Merás A. M., and Helgaker T., J. Chem. Phys. 106, 1808 (1997).10.1063/1.473322 DOI

DePrince A. E. III and Sherrill C. D., J. Chem. Theory Comput. 9, 293 (2013).10.1021/ct300780u PubMed DOI

Sosa C., Geertsen J., Trucks G. W., Bartlett R. J., and Franz J. A., Chem. Phys. Lett. 159, 148 (1989).10.1016/0009-2614(89)87399-3 DOI

Klopper W., Noga J., Koch H., and Helgaker T., Theor. Chem. Acc. 97, 164 (1997).10.1007/s002140050250 DOI

Taube A. G. and Bartlett R. J., Collect. Czech. Chem. Commun. 70, 837 (2005).10.1135/cccc20050837 DOI

Landau A., Khistyaev K., Dolgikh S., and Krylov A. I., J. Chem. Phys. 132, 014109 (2010).10.1063/1.3276630 PubMed DOI

Geertsen J., Rittby M., and Bartlett R. J., Chem. Phys. Lett. 164, 57 (1989).10.1016/0009-2614(89)85202-9 DOI

Stanton J. F. and Bartlett R. J., J. Chem. Phys. 98, 7029 (1993).10.1063/1.464746 DOI

Smith C. E., King R. A., and Crawford T. D., J. Chem. Phys. 122, 054110 (2005).10.1063/1.1835953 PubMed DOI

Crawford T. D. and Stephens P. J., J. Phys. Chem. A 112, 1339 (2008).10.1021/jp0774488 PubMed DOI

Kállay M., Nagy P. R., Mester D., Rolik Z., Samu G., Csontos J., Csóka J., Szabó P. B., Gyevi-Nagy L., Hégely B., Ladjánszki I., Szegedy L., Ladóczki B., Petrov K., Farkas M., Mezei P. D., and Ganyecz Á., J. Chem. Phys. 152, 074107 (2020).10.1063/1.5142048 PubMed DOI

Bozkaya U., Turney J. M., Yamaguchi Y., Schaefer H. F. III, and Sherrill C. D., J. Chem. Phys. 135, 104103 (2011).10.1063/1.3631129 PubMed DOI

Bozkaya U., J. Chem. Phys. 135, 224103 (2011).10.1063/1.3665134 PubMed DOI

Bozkaya U. and Sherrill C. D., J. Chem. Phys. 138, 184103 (2013).10.1063/1.4803662 PubMed DOI

Bozkaya U. and Sherrill C. D., J. Chem. Phys. 139, 054104 (2013).10.1063/1.4816628 PubMed DOI

Bozkaya U., J. Chem. Theory Comput. 10, 2371 (2014).10.1021/ct500231c PubMed DOI

Bozkaya U., J. Chem. Theory Comput. 12, 1179 (2016).10.1021/acs.jctc.5b01128 PubMed DOI

Bozkaya U., Phys. Chem. Chem. Phys. 18, 11362 (2016).10.1039/c6cp00164e PubMed DOI

Bozkaya U. and Sherrill C. D., J. Comput. Chem. 39, 351 (2018).10.1002/jcc.25122 PubMed DOI

Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 132, 184111 (2010).10.1063/1.3426316 PubMed DOI

Hohenstein E. G., Parrish R. M., Sherrill C. D., Turney J. M., and Schaefer H. F. III, J. Chem. Phys. 135, 174107 (2011).10.1063/1.3656681 PubMed DOI

Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 133, 014101 (2010).10.1063/1.3451077 PubMed DOI

Hohenstein E. G. and Sherrill C. D., J. Chem. Phys. 133, 104107 (2010).10.1063/1.3479400 PubMed DOI

Parrish R. M., Hohenstein E. G., and Sherrill C. D., J. Chem. Phys. 139, 174102 (2013).10.1063/1.4826520 PubMed DOI

Gonthier J. F. and Sherrill C. D., J. Chem. Phys. 145, 134106 (2016).10.1063/1.4963385 PubMed DOI

Hapka M., Żuchowski P. S., Szczęśniak M. M., and Chałasiński G., J. Chem. Phys. 137, 164104 (2012).10.1063/1.4758455 PubMed DOI

Żuchowski P. S., Podeszwa R., Moszyński R., Jeziorski B., and Szalewicz K., J. Chem. Phys. 129, 084101 (2008).10.1063/1.2968556 PubMed DOI

Parrish R. M. and Sherrill C. D., J. Chem. Phys. 141, 044115 (2014).10.1063/1.4889855 PubMed DOI

Parrish R. M., Parker T. M., and Sherrill C. D., J. Chem. Theory Comput. 10, 4417 (2014).10.1021/ct500724p PubMed DOI

Parrish R. M., Gonthier J. F., Corminboeuf C., and Sherrill C. D., J. Chem. Phys. 143, 051103 (2015).10.1063/1.4927575 PubMed DOI

Pople J. A., Head-Gordon M., and Raghavachari K., J. Chem. Phys. 87, 5968 (1987).10.1063/1.453520 DOI

Sherrill C. D. and Schaefer H. F. III, in Advances in Quantum Chemistry, edited by Löwdin P.-O. (Academic Press, New York, 1999), Vol. 34, pp. 143–269.

Olsen J., Roos B. O., Jorgensen P., and Jensen H. J. A., J. Chem. Phys. 89, 2185 (1988).10.1063/1.455063 DOI

Roos B. O., Taylor P. R., and Sigbahn P. E. M., Chem. Phys. 48, 157 (1980).10.1016/0301-0104(80)80045-0 DOI

Ruedenberg K., Schmidt M. W., Gilbert M. M., and Elbert S. T., Chem. Phys. 71, 41 (1982).10.1016/0301-0104(82)87004-3 DOI

Malmqvist P. A., Rendell A., and Roos B. O., J. Phys. Chem. 94, 5477 (1990).10.1021/j100377a011 DOI

White S. R. and Martin R. L., J. Chem. Phys. 110, 4127 (1999).10.1063/1.478295 DOI

Chan G. K.-L. and Head-Gordon M., J. Chem. Phys. 116, 4462 (2002).10.1063/1.1449459 DOI

Wouters S., Bogaerts T., Van Der Voort P., Van Speybroeck V., and Van Neck D., J. Chem. Phys. 140, 241103 (2014).10.1063/1.4885815 PubMed DOI

Wouters S., Van Speybroeck V., and Van Neck D., J. Chem. Phys. 145, 054120 (2016).10.1063/1.4959817 PubMed DOI

Evangelista F. A., Prochnow E., Gauss J., and Schaefer H. F. III, J. Chem. Phys. 132, 074107 (2010).10.1063/1.3305335 PubMed DOI

Evangelista F. A., Simmonett A. C., Schaefer H. F. III, Mukherjee D., and Allen W. D., Phys. Chem. Chem. Phys. 11, 4728 (2009).10.1039/b822910d PubMed DOI

Kállay M., Rolik Z., Csontos J., Ladjánski I., Szegedy L., Ladóczki B., Samu G., Petrov K., Farkas M., Nagy P., Mester D., and Hégely B., MRCC, a quantum chemical program suite, http://www.mrcc.hu.

Schriber J. B., Hannon K. P., Li C., and Evangelista F. A., J. Chem. Theory Comput. 14, 6295 (2018).10.1021/acs.jctc.8b00877 PubMed DOI

Li C. and Evangelista F. A., Annu. Rev. Phys. Chem. 70, 245 (2019).10.1146/annurev-physchem-042018-052416 PubMed DOI

Schriber J. B., Hannon K., Li C., Zhang T., and Evangelista F. A., FORTE: A suite of quantum chemistry methods for strongly correlated electrons. For the current version, see https://github.com/evangelistalab/forte; accessed January 2020.

Fosso-Tande J. and DePrince A. E. III, V2RDM_CASSCF: A variational 2-RDM-driven CASSCF plugin to Psi4. For the current version, see https://github.com/edeprince3/v2rdm_casscf; accessed January 2020.

Kutzelnigg W., J. Chem. Phys. 125, 171101 (2006).10.1063/1.2387955 PubMed DOI

Simmonett A. C., Wilke J. J., Schaefer H. F. III, and Kutzelnigg W., J. Chem. Phys. 133, 174122 (2010).10.1063/1.3503657 PubMed DOI

Sokolov A. Y., Simmonett A. C., and Schaefer H. F. III, J. Chem. Phys. 138, 024107 (2013).10.1063/1.4773580 PubMed DOI

Sokolov A. Y. and Schaefer H. F. III, J. Chem. Phys. 139, 204110 (2013).10.1063/1.4833138 PubMed DOI

Sokolov A. Y., Schaefer H. F. III, and Kutzelnigg W., J. Chem. Phys. 141, 074111 (2014).10.1063/1.4892946 PubMed DOI

Copan A. V., Sokolov A. Y., and Schaefer H. F. III, J. Chem. Theory Comput. 10, 2389 (2014).10.1021/ct5002895 PubMed DOI

Mullinax J. W., Sokolov A. Y., and Schaefer H. F. III, J. Chem. Theory Comput. 11, 2487 (2015).10.1021/acs.jctc.5b00346 PubMed DOI

Sokolov A. Y., Wilke J. J., Simmonett A. C., and Schaefer H. F. III, J. Chem. Phys. 137, 054105 (2012).10.1063/1.4739423 PubMed DOI

Wolf A., Reiher M., and Hess B. A., J. Chem. Phys. 117, 9215 (2002).10.1063/1.1515314 DOI

Reiher M. and Wolf A., J. Chem. Phys. 121, 10945 (2004).10.1063/1.1818681 PubMed DOI

Dyall K. G., J. Chem. Phys. 106, 9618 (1997).10.1063/1.473860 DOI

Dyall K. G., J. Chem. Phys. 115, 9136 (2001).10.1063/1.1413512 DOI

Kutzelnigg W., Chem. Phys. 225, 203 (1997).10.1016/s0301-0104(97)00240-1 DOI

Kutzelnigg W. and Liu W., J. Chem. Phys. 123, 241102 (2005).10.1063/1.2137315 PubMed DOI

Kutzelnigg W. and Liu W., Mol. Phys. 104, 2225 (2006).10.1080/00268970600662481 DOI

Liu W. and Kutzelnigg W., J. Chem. Phys. 126, 114107 (2007).10.1063/1.2710258 PubMed DOI

Liu W. and Peng D., J. Chem. Phys. 131, 031104 (2009).10.1063/1.3159445 PubMed DOI

Iliaš M. and Saue T., J. Chem. Phys. 126, 064102 (2007).10.1063/1.2436882 PubMed DOI

Zou W., Filatov M., and Cremer D., J. Chem. Phys. 134, 244117 (2011).10.1063/1.3603454 PubMed DOI

Cheng L. and Gauss J., J. Chem. Phys. 135, 084114 (2011).10.1063/1.3624397 PubMed DOI

Verma P., Derricotte W. D., and Evangelista F. A., J. Chem. Theory Comput. 12, 144 (2016).10.1021/acs.jctc.5b00817 PubMed DOI

East A. L. L. and Allen W. D., J. Chem. Phys. 99, 4638 (1993).10.1063/1.466062 DOI

Császár A. G., Allen W. D., and Schaefer H. F. III, J. Chem. Phys. 108, 9751 (1998).10.1063/1.476449 DOI

Kraus P. and Frank I., Int. J. Quantum Chem. 119, e25953 (2019).10.1002/qua.25953 DOI

Boys S. F. and Bernardi F., Mol. Phys. 19, 553 (1970).10.1080/00268977000101561 DOI

Wells B. H. and Wilson S., Chem. Phys. Lett. 101, 429 (1983).10.1016/0009-2614(83)87508-3 DOI

Valiron P. and Mayer I., Chem. Phys. Lett. 275, 46 (1997).10.1016/s0009-2614(97)00689-1 DOI

van der Walt S., Colbert S. C., and Varoquaux G., Comput. Sci. Eng. 13, 22 (2011).10.1109/mcse.2011.37 DOI

Smith D. G. A., PSI4NUMPY: Combining PSI4 and NUMPY for education and development. For the current version, see https://github.com/psi4/psi4numpy; accessed January 2020.

Backhouse O. J., Nusspickel M., and Booth G. H., J. Chem. Theory Comput. 16, 1090 (2020).10.1021/acs.jctc.9b01182 PubMed DOI

Grimsley H. R., Economou S. E., Barnes E., and Mayhall N. J., Nat. Commun. 10, 3007 (2019).10.1038/s41467-019-10988-2 PubMed DOI PMC

Kodrycka M., Holzer C., Klopper W., and Patkowski K., J. Chem. Theory Comput. 15, 5965 (2019).10.1021/acs.jctc.9b00547 PubMed DOI

Claudino D. and Mayhall N. J., J. Chem. Theory Comput. 15, 6085 (2019).10.1021/acs.jctc.9b00682 PubMed DOI

Derricotte W. D., J. Phys. Chem. A 123, 7881 (2019).10.1021/acs.jpca.9b06865 PubMed DOI

Zhang T., Li C., and Evangelista F. A., J. Chem. Theory Comput. 15, 4399 (2019).10.1021/acs.jctc.9b00353 PubMed DOI

Waldrop J. M. and Patkowski K., J. Chem. Phys. 150, 074109 (2019).10.1063/1.5086079 PubMed DOI

Rackers J. A. and Ponder J. W., J. Chem. Phys. 150, 084104 (2019).10.1063/1.5081060 PubMed DOI PMC

Sauceda H. E., Chmiela S., Poltavsky I., Müller K.-R., and Tkatchenko A., J. Chem. Phys. 150, 114102 (2019).10.1063/1.5078687 PubMed DOI

Margraf J. T., Kunkel C., and Reuter K., J. Chem. Phys. 150, 244116 (2019).10.1063/1.5094788 PubMed DOI

Crawford T. D., Kumar A., Bazanté A. P., and Di Remigio R., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 9, e1406 (2019).10.1002/wcms.1406 DOI

Zanchi C., Longhi G., Abbate S., Pellegrini G., Biagioni P., and Tommasini M., Appl. Sci. 9, 4691 (2019).10.3390/app9214691 DOI

Herbst M. F., Scheurer M., Fransson T., Rehn D. R., and Dreuw A., “adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods,” WIREs Comput. Mol. Sci. (published online, 2020).10.1002/wcms.1462 DOI

Rinkevicius Z., Li X., Vahtras O., Ahmadzadeh K., Brand M., Ringholm M., List N. H., Scheurer M., Scott M., Dreuw A., and Norman P., “VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments,” WIREs Comput. Mol. Sci. (published online, 2020).10.1002/wcms.1457 DOI

Alenaizan A., Burns L. A., and Sherrill C. D., Int. J. Quantum Chem. 120, e26035 (2020).10.1002/qua.26035 DOI

Houck S. E. and Mayhall N. J., J. Chem. Theory Comput. 15, 2278 (2019).10.1021/acs.jctc.8b01268 PubMed DOI

Townsend J. and Vogiatzis K. D., J. Phys. Chem. Lett. 10, 4129 (2019).10.1021/acs.jpclett.9b01442 PubMed DOI

Kluyver T., Ragan-Kelley B., Pérez F., Granger B., Bussonnier M., Frederic J., Kelley K., Hamrick J., Grout J., Corlay S., Ivanov P., Avila D., Abdalla S., and Willing C., in Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by Loizides F. and Schmidt B. (IOS Press, 2016), pp. 87–90.

Krylov A., Windus T. L., Barnes T., Marin-Rimoldi E., Nash J. A., Pritchard B., Smith D. G. A., Altarawy D., Saxe P., Clementi C., Crawford T. D., Harrison R. J., Jha S., Pande V. S., and Head-Gordon T., J. Chem. Phys. 149, 180901 (2018).10.1063/1.5052551 PubMed DOI

Smith D. G. A., Burns L. A., Altarawy D., Naden L., and Welborn M., QCARCHIVE: A central source to compile, aggregate, query, and share quantum chemistry data, https://qcarchive.molssi.org; accessed January 2020.

Smith D. G. A., Altarawy D., Burns L. A., Welborn M., Naden L. N., Ward L., and Ellis S., “The {MolSSI} {QCArchive} Project: An open-source platform to compute, organize, and share quantum chemistry data,” WIREs Comput. Mol. Sci. (unpublished) (2020).

Fortenberry R. C., McDonald A. R., Shepherd T. D., Kennedy M., and Sherrill C. D., in The Promise of Chemical Education: Addressing Our Students’ Needs, edited by Daus K. and Rigsby R. (American Chemical Society, Washington, DC, 2015), Vol. 1193, pp. 85–98.

Sirianni D. A., Alenaizan A., Cheney D. L., and Sherrill C. D., J. Chem. Theory Comput. 14, 3004 (2018).10.1021/acs.jctc.8b00114 PubMed DOI

Burns L. A., Faver J. C., Zheng Z., Marshall M. S., Smith D. G. A., Vanommeslaeghe K., MacKerell A. D., Merz K. M., and Sherrill C. D., J. Chem. Phys. 147, 161727 (2017).10.1063/1.5001028 PubMed DOI PMC

Smith D. G. A., de Jong B., Burns L. A., Hutchison G., and Hanwell M. D., QCSCHEMA: A schema for quantum chemistry. For the current version, see https://github.com/MolSSI/QCSchema; accessed January 2020.

Smith D. G. A., Burns L. A., Naden L., and Welborn M., QCELEMENTAL: Periodic table, physical constants, and molecule parsing for quantum chemistry. For the current version, see https://github.com/MolSSI/QCElemental; accessed January 2020.

Smith D. G. A., Lee S., Burns L. A., and Welborn M., QCENGINE: Quantum chemistry program executor and IO standardizer (QCSchema). For the current version, see https://github.com/MolSSI/QCEngine; accessed January 2020.

Smith D. G. A., Welborn M., Altarawy D., and Naden L., QCFRACTAL: A distributed compute and database platform for quantum chemistry. For the current version, see https://github.com/MolSSI/QCFractal; accessed January 2020.

Kenny J. P., Janssen C. L., Valeev E. F., and Windus T. L., J. Comput. Chem. 29, 562 (2008).10.1002/jcc.20815 PubMed DOI

Naoki I., MESSAGEPACK-PYTHON: MessagePack serializer implementation for Python. For the current version, see https://github.com/msgpack/msgpack-python; accessed January 2020. For the originating project, see https://msgpack.org/.

Lehtola S., Steigemann C., Oliveira M. J., and Marques M. A., SoftwareX 7, 1 (2018).10.1016/j.softx.2017.11.002 DOI

Mardirossian N. and Head-Gordon M., J. Chem. Phys. 144, 214110 (2016).10.1063/1.4952647 PubMed DOI

Sun J., Ruzsinszky A., and Perdew J. P., Phys. Rev. Lett. 115, 036402 (2015).10.1103/physrevlett.115.036402 PubMed DOI

Jurečka P., Šponer J., Černý J., and Hobza P., Phys. Chem. Chem. Phys. 8, 1985 (2006).10.1039/b600027d PubMed DOI

Řezáč J. and Hobza P., J. Chem. Theory Comput. 9, 2151 (2013).10.1021/ct400057w PubMed DOI

Sure R. and Grimme S., J. Comput. Chem. 34, 1672 (2013).10.1002/jcc.23317 PubMed DOI

Grimme S., Brandenburg J. G., Bannwarth C., and Hansen A., J. Chem. Phys. 143, 054107 (2015).10.1063/1.4927476 PubMed DOI

Grimme S., Antony J., Ehrlich S., and Krieg H., DFTD3: Dispersion correction for DFT, Hartree–Fock, and semi-empirical quantum chemical methods. For the current version, see https://github.com/loriab/dftd3; accessed January 2020. For the originating project, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3.

Kruse H. and Grimme S., GCP: Geometrical counterpoise correction for DFT and Hartree–Fock quantum chemical methods. For the current version, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp; accessed January 2020.

Grimme S., J. Comput. Chem. 27, 1787 (2006).10.1002/jcc.20495 PubMed DOI

Grimme S., Antony J., Ehrlich S., and Krieg H., J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344 PubMed DOI

Smith D. G. A., Burns L. A., Patkowski K., and Sherrill C. D., J. Phys. Chem. Lett. 7, 2197 (2016).10.1021/acs.jpclett.6b00780 PubMed DOI

Řezáč J., Greenwell C., and Beran G. J. O., J. Chem. Theory Comput. 14, 4711 (2018).10.1021/acs.jctc.8b00548 PubMed DOI

Greenwell C., MP2D: A program for calculating the MP2D dispersion energy. For the current version, see https://github.com/Chandemonium/MP2D; accessed January 2020.

Hujo W. and Grimme S., J. Chem. Theory Comput. 7, 3866 (2011).10.1021/ct200644w PubMed DOI

Sirianni D. A., Smith D. G. A., Burns L. A., Sitkoff D. F., Cheney D. L., and Sherrill C. D., “Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory” (unpublished). PubMed

Warne T., Edwards P. C., Doré A. S., Leslie A. G. W., and Tate C. G., Science 364, 775 (2019).10.1126/science.aau5595 PubMed DOI PMC

Misquitta A. J., Podeszwa R., Jeziorski B., and Szalewicz K., J. Chem. Phys. 123, 214103 (2005).10.1063/1.2135288 PubMed DOI

Heßelmann A., Jansen G., and Schütz M., J. Chem. Phys. 122, 014103 (2005).10.1063/1.1824898 PubMed DOI

Williams H. L. and Chabalowski C. F., J. Phys. Chem. A 105, 646 (2001).10.1021/jp003883p DOI

Grüning M., Gritsenko O. V., van Gisbergen S. J. A., and Baerends E. J., J. Chem. Phys. 114, 652 (2001).10.1063/1.1327260 DOI

Hesselmann A. and Jansen G., Chem. Phys. Lett. 367, 778 (2003).10.1016/s0009-2614(02)01796-7 DOI

Podeszwa R., Bukowski R., and Szalewicz K., J. Chem. Theory Comput. 2, 400 (2006).10.1021/ct050304h PubMed DOI

Bukowski R., Podeszwa R., and Szalewicz K., Chem. Phys. Lett. 414, 111 (2005).10.1016/j.cplett.2005.08.048 DOI

Jansen G., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 127 (2014).10.1002/wcms.1164 DOI

Schäffer R. and Jansen G., Theor. Chem. Acc. 131, 1235 (2012).10.1007/s00214-012-1235-6 DOI

Schäffer R. and Jansen G., Mol. Phys. 111, 2570 (2013).10.1080/00268976.2013.827253 DOI

Patkowski K., WIREs Comput. Mol. Sci. 10, e1452 (2020).10.1002/wcms.1452 DOI

Lao K. U., Schäffer R., Jansen G., and Herbert J. M., J. Chem. Theory Comput. 11, 2473 (2015).10.1021/ct5010593 PubMed DOI

Parker T. M., Burns L. A., Parrish R. M., Ryno A. G., and Sherrill C. D., J. Chem. Phys. 140, 094106 (2014).10.1063/1.4867135 PubMed DOI

Patkowski K., Żuchowski P. S., and Smith D. G. A., J. Chem. Phys. 148, 164110 (2018).10.1063/1.5021891 PubMed DOI

Valeev E. F. and Fermann J. T., LIBINT: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. For the current version, see https://github.com/evaleev/libint/tree/v1; accessed January 2020.

Valeev E. F., LIBINT: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. For the current version, see https://github.com/evaleev/libint; accessed January 2020. For the originating project, see http://libint.valeyev.net/.

Pritchard B. P. and Chow E., J. Comput. Chem. 37, 2537 (2016).10.1002/jcc.24483 PubMed DOI

Huang H. and Chow E., in SC18: The International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE Press, 2018), pp. 1–14. PubMed

Almlöf J., K. Faegri, Jr., and Korsell K., J. Comput. Chem. 3, 385 (1982).10.1002/jcc.540030314 DOI

Van Lenthe J. H., Zwaans R., Van Dam H. J. J., and Guest M. F., J. Comput. Chem. 27, 926 (2006).10.1002/jcc.20393 PubMed DOI

Wolfsberg M. and Helmholz L., J. Chem. Phys. 20, 837 (1952).10.1063/1.1700580 DOI

Lehtola S., J. Chem. Theory Comput. 15, 1593 (2019).10.1021/acs.jctc.8b01089 PubMed DOI PMC

Lehtola S., Int. J. Quantum Chem. 119, e25945 (2019).10.1002/qua.25944 DOI

Lehtola S., Phys. Rev. A 101, 012516 (2020).10.1103/physreva.101.012516 DOI

Lehtola S., J. Chem. Phys. 151, 241102 (2019).10.1063/1.5139948 PubMed DOI

Lehtola S., Phys. Rev. A 101, 032504 (2020).10.1103/physreva.101.032504 DOI

Dreuw A. and Head-Gordon M., Chem. Rev. 105, 4009 (2005).10.1021/cr0505627 PubMed DOI

Stratmann R. E., Scuseria G. E., and Frisch M. J., J. Chem. Phys. 109, 8218 (1998).10.1063/1.477483 DOI

Davidson E. R., J. Comput. Phys. 17, 87 (1975).10.1016/0021-9991(75)90065-0 DOI

Norman P., Ruud K., and Saue T., Principles and Practices of Molecular Properties: Theory, Modeling, and Simulations (John Wiley & Sons, 2018).

Marques M., Lehtola S., Oliveira M., Andrade X., and Strubbe D., LIBXC: A library of exchange-correlation functionals for density-functional theory. For the current version, see https://gitlab.com/libxc/libxc; accessed January 2020.

Smith D. G. A., Burns L. A., and Simmonett A. C., GAU2GRID: Fast computation of a gaussian and its derivative on a grid. For the current version, see https://github.com/dgasmith/gau2grid; accessed January 2020.

Wolf A., Reiher M., and Hess B. A., DKH: Wolf, Reiher, and Hess’s Douglas-Kroll-Hess relativistic correction. For the current version, see https://github.com/psi4/dkh; accessed January 2020. For originating project, see http://www.reiher.ethz.ch/software/dkh-x2c.html.

Kaliman I., LIBEFP: Parallel implementation of the effective fragment potential method. For the current version, see https://github.com/ilyak/libefp; accessed January 2020. PubMed

Kaliman I. A. and Slipchenko L. V., J. Comput. Chem. 34, 2284 (2013).10.1002/jcc.23375 PubMed DOI

Stone A. J., GDMA: A program to perform distributed multipole analysis. For the current version, see https://github.com/psi4/gdma; accessed January 2020. For originating project, see http://www-stone.ch.cam.ac.uk/programs.html.

Stone A. J., J. Chem. Theory Comput. 1, 1128 (2005).10.1021/ct050190+ PubMed DOI

Wouters S., CHEMPS2: A spin-adapted implementation of DMRG for ab initio quantum chemistry. For the current version, see https://github.com/SebWouters/CheMPS2; accessed January 2020.

Wouters S., Poelmans W., Ayers P. W., and Van Neck D., Comput. Phys. Commun. 185, 1501 (2014).10.1016/j.cpc.2014.01.019 DOI

Wouters S. and Van Neck D., Eur. Phys. J. D 68, 272 (2014).10.1140/epjd/e2014-50500-1 DOI

Remigio R. D. and Frediani L., PCMSOLVER: An API for the polarizable continuum model. For the current version, see https://github.com/PCMSolver/pcmsolver; accessed January 2020.

Di Remigio R., Mozgawa K., Cao H., Weijo V., and Frediani L., J. Chem. Phys. 144, 124103 (2016).10.1063/1.4943782 PubMed DOI

Flocke N. and Lotrich V., ERD: ACESIII electron repulsion integrals. For the current version, see https://github.com/psi4/erd; accessed January 2020. For originating project, see http://www.qtp.ufl.edu/Aces/.

Flocke N. and Lotrich V., J. Comput. Chem. 29, 2722 (2008).10.1002/jcc.21018 PubMed DOI

Pritchard B. P. and Chow E., SIMINT: A code generator for vectorized integrals. For the current version, see https://github.com/simint-chem/simint-generator; accessed January 2020.

Turney J. M., AMBIT: A C++ library for the implementation of tensor product calculations through a clean, concise user interface. For the current version, see https://github.com/jturney/ambit; accessed January 2020.

Burns L. A., PYLIBEFP: A python wrapper to libefp library for effective fragment potentials. For the current version, see https://github.com/loriab/pylibefp; accessed January 2020.

Scheurer M., CPPE: C++ and Python library for polarizable embedding. For the current version, see https://github.com/maxscheurer/cppe; accessed January 2020.

Scheurer M., Reinholdt P., Kjellgren E. R., Haugaard Olsen J. M., Dreuw A., and Kongsted J., J. Chem. Theory Comput. 15, 6154 (2019).10.1021/acs.jctc.9b00758 PubMed DOI

Herbst M. F. and Scheurer M., ADCC: Seamlessly connect your program to ADC. For the current version, see https://github.com/adc-connect/adcc; accessed January 2020.

Fosso-Tande J., Nguyen T.-S., Gidofalvi G., and DePrince A. E. III, J. Chem. Theory Comput. 12, 2260 (2016).10.1021/acs.jctc.6b00190 PubMed DOI

Deustua J. E., Shen J., and Piecuch P., CCT3: A PSI4 plugin which performs active-space coupled-cluster CCSDt calculations and which can determine noniterative corrections to CCSDt defining the CC(t;3) approach. For the current version, see https://github.com/piecuch-group/psi4_cct3; accessed January 2020.

Shen J. and Piecuch P., Chem. Phys. 401, 180 (2012).10.1016/j.chemphys.2011.11.033 DOI

Shen J. and Piecuch P., J. Chem. Phys. 136, 144104 (2012).10.1063/1.3700802 PubMed DOI

DePrince A. E. III, GPU_DFCC: GPU-accelerated coupled cluster with density fitting. For the current version, see https://github.com/edeprince3/gpu_dfcc; accessed January 2020.

DePrince A. E. III, Kennedy M. R., Sumpter B. G., and Sherrill C. D., Mol. Phys. 112, 844 (2014).10.1080/00268976.2013.874599 DOI

Schmidt J. R., and Polik W. F., WebMO 17, WebMO, LLC, Holland, MI, 2016, http://www.webmo.net.

Schaftenaar G. and Noordik J. H., MOLDEN: A pre- and post-processing program for molecular and electronic structures. For the current version, see ftp://ftp.cmbi.umcn.nl/pub/molgraph/molden; accessed January 2020. PubMed

Schaftenaar G. and Noordik J. H., J. Comput.-Aided Mol. Des. 14, 123 (2000).10.1023/a:1008193805436 PubMed DOI

Nikolaienko T. Y., JANPA: A cross-platform open-source implementation of NPA and other electronic structure analysis methods with Java. For the current version, see http://janpa.sourceforge.net; accessed January 2020.

Nikolaienko T. Y., Bulavin L. A., and Hovorun D. M., Comput. Theor. Chem. 1050, 15 (2014).10.1016/j.comptc.2014.10.002 DOI

Ringer McDonald A., Magers D. B., Heidar-Zadeh F., Shepherd T., and Chavez V. H., PSI4EDUCATION: Teaching chemistry through computation. For the current version, see https://github.com/Psi4Education/psi4education; accessed January 2020.

Zott M., PSIOMM: An interface between PSI4 and OpenMM. For the current version, see https://github.com/mzott/Psi4-OpenMM-Interface; accessed January 2020.

Doerr S., Damas J. M., and Galvelis R., HTMD: Programming Environment for Molecular Discovery. For the current version, see https://github.com/Acellera/htmd and https://github.com/Acellera/parameterize; accessed January 2020.

Doerr S., Harvey M. J., Noé F., and De Fabritiis G., J. Chem. Theory Comput. 12, 1845 (2016).10.1021/acs.jctc.6b00049 PubMed DOI

Galvelis R., Doerr S., Damas J. M., Harvey M. J., and De Fabritiis G., J. Chem. Inf. Model. 59, 3485 (2019).10.1021/acs.jcim.9b00439 PubMed DOI

Buch I., Harvey M. J., Giorgino T., Anderson D. P., and De Fabritiis G., GPUGRID: Volunteer computing for biomedicine. For the current version, see http://gpugrid.net/; accessed January 2020.

Buch I., Harvey M. J., Giorgino T., Anderson D. P., and De Fabritiis G., J. Chem. Inf. Model. 50, 397 (2010).10.1021/ci900455r PubMed DOI

Derricotte W., PYREX: A reaction energy extension for ab initio quantum chemistry. For the current version, see https://github.com/WDerricotte/pyrex; accessed January 2020.

McGibbon R. T., SNS-MP2: Spin-network-scaled MP2. For the current version, see https://github.com/DEShawResearch/sns-mp2; accessed January 2020.

McGibbon R. T., Taube A. G., Donchev A. G., Siva K., Hernández F., Hargus C., Law K.-H., Klepeis J. L., and Shaw D. E., J. Chem. Phys. 147, 161725 (2017).10.1063/1.4986081 PubMed DOI

Alenaizan A., RESP: A restrained electrostatic potential (RESP) plugin to PSI4. For the current version, see https://github.com/cdsgroup/resp; accessed January 2020.

Marques M., Hu S., Chen R., and Wood S., QISKIT-AQUA: Quantum algorithms and applications in Python. For the current version, see https://github.com/Qiskit/qiskit-aqua; accessed January 2020.

Granade C. and Paz A., QUANTUM: Microsoft Quantum Development Kit Samples. For the current version, see https://github.com/microsoft/Quantum; accessed January 2020.

Borca C. H., CRYSTALATTE: Automating the calculation of crystal lattice energies. For the current version, see https://github.com/carlosborca/CrystaLattE; accessed January 2020.

Borca C. H., Bakr B. W., Burns L. A., and Sherrill C. D., J. Chem. Phys. 151, 144103 (2019).10.1063/1.5120520 PubMed DOI

Babbush R., OPENFERMION: OpenFermion plugin to interface with the electronic structure package Psi4. For the current version, see https://github.com/quantumlib/OpenFermion; accessed January 2020.

McClean J. R., Sung K. J., Kivlichan I. D., Cao Y., Dai C., Fried E. S., Gidney C., Gimby B., Gokhale P., Häner T., Hardikar T., Havlíček V., Higgott O., Huang C., Izaac J., Jiang Z., Liu X., McArdle S., Neeley M., O’Brien T., O’Gorman B., Ozfidan I., Radin M. D., Romero J., Rubin N., Sawaya N. P. D., Setia K., Sim S., Steiger D. S., Steudtner M., Sun Q., Sun W., Wang D., Zhang F., and Babbush R., “OpenFermion: The electronic structure package for quantum computers,” arXiv:1710.07629 [quant-ph] (2017).

Sung K. J. and Babbush R., OPENFERMION-PSI4: The electronic structure package for quantum computers. For the current version, see https://github.com/quantumlib/OpenFermion-Psi4; accessed January 2020.

Burns L. A., Lolinco A., and Glick Z., QCDB: Quantum chemistry common driver and databases. For the current version, see https://github.com/qcdb/qcdb; accessed January 2020.

Heide A. and King R. A., OPTKING: A Python version of the PSI4 geometry optimizer. For the current version, see https://github.com/psi-rking/optking; accessed January 2020.

Ehlert C., PSIXAS: A Psi4 plugin for X-ray absorption spectra (XPS, NEXAFS, PP-NEXAFS). For the current version, see https://github.com/Masterluke87/psixas; accessed January 2020. PubMed

Houck S. and Mayhall N., FOCKCI: A quick PSI4 implementation of SF-IP/EA. For the current version, see https://github.com/shannonhouck/psi4fockci; accessed January 2020.

Larsen A. H. and Mortensen J. J., ASE: Atomic Simulation Environment: A Python library for working with atoms. For the current version, see https://gitlab.com/ase/ase; accessed January 2020. PubMed

Larsen A. H., Mortensen J. J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Jensen P. B., Kermode J., Kitchin J. R., Kolsbjerg E. L., Kubal J., Kaasbjerg K., Lysgaard S., Maronsson J. B., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., and Jacobsen K. W., J. Phys.: Condens. Matter 29, 273002 (2017).10.1088/1361-648x/aa680e PubMed DOI

Ceriotti M., Hirshberg B., and Kapil V., I-PI: A universal force engine. For the current version, see https://github.com/i-pi/i-pi; accessed January 2020.

Kapil V., Rossi M., Marsalek O., Petraglia R., Litman Y., Spura T., Cheng B., Cuzzocrea A., Meißner R. H., Wilkins D. M., Helfrecht B. A., Juda P., Bienvenue S. P., Fang W., Kessler J., Poltavsky I., Vandenbrande S., Wieme J., Corminboeuf C., Kühne T. D., Manolopoulos D. E., Markland T. E., Richardson J. O., Tkatchenko A., Tribello G. A., Van Speybroeck V., and Ceriotti M., Comput. Phys. Commun. 236, 214 (2019).10.1016/j.cpc.2018.09.020 DOI

Barnes T. A., MDI: A library that enables code interoperability via the MolSSI Driver Interface. For the current version, see https://github.com/MolSSI/MDI_Library; accessed January 2020. Also, 10.5281/zenodo.3659285. DOI

Wang L.-P., Smith D. G. A., and Qiu Y., GEOMETRIC: A geometry optimization code that includes the TRIC coordinate system. For the current version, see https://github.com/leeping/geomeTRIC; accessed January 2020.

Wang L.-P. and Song C., J. Chem. Phys. 144, 214108 (2016).10.1063/1.4952956 PubMed DOI

Banerjee A., Jensen J. O., and Simons J., J. Chem. Phys. 82, 4566 (1985).10.1063/1.448713 DOI

Jensen J. O., Banerjee A., and Simons J., Chem. Phys. 102, 45 (1986).10.1016/0301-0104(86)85116-3 DOI

Gordon M. S., Freitag M. A., Bandyopadhyay P., Jensen J. H., Kairys V., and Stevens W. J., J. Phys. Chem. A 105, 293 (2001).10.1021/jp002747h DOI

Ghosh D., Kosenkov D., Vanovschi V., Williams C. F., Herbert J. M., Gordon M. S., Schmidt M. W., Slipchenko L. V., and Krylov A. I., J. Phys. Chem. A 114, 12739 (2010).10.1021/jp107557p PubMed DOI PMC

Schirmer J., Phys. Rev. A 26, 2395 (1982).10.1103/physreva.26.2395 DOI

Trofimov A. B., Krivdina I. L., Weller J., and Schirmer J., Chem. Phys. 329, 1 (2006).10.1016/j.chemphys.2006.07.015 DOI

Dreuw A. and Wormit M., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5, 82 (2015).10.1002/wcms.1206 DOI

Olsen J. M., Aidas K., and Kongsted J., J. Chem. Theory Comput. 6, 3721 (2010).10.1021/ct1003803 PubMed DOI

Olsen J. M. H. and Kongsted J., “Chapter 3: Molecular properties through polarizable embedding,” in Advances in Quantum Chemistry, edited by Sabin J. R. and Brändas E. (Academic Press, 2011), Vol. 61, pp. 107–143.

Mazziotti D. A., Phys. Rev. A 65, 062511 (2002).10.1103/physreva.65.062511 PubMed DOI

Gidofalvi G. and Mazziotti D. A., J. Chem. Phys. 129, 134108 (2008).10.1063/1.2983652 PubMed DOI

Maradzike E., Gidofalvi G., Turney J. M., Schaefer H. F. III, and DePrince A. E. III, J. Chem. Theory Comput. 13, 4113 (2017).10.1021/acs.jctc.7b00366 PubMed DOI

Piecuch P., Mol. Phys. 108, 2987 (2010).10.1080/00268976.2010.522608 DOI

Oliphant N. and Adamowicz L., J. Chem. Phys. 96, 3739 (1992).10.1063/1.461878 DOI

Piecuch P., Oliphant N., and Adamowicz L., J. Chem. Phys. 99, 1875 (1993).10.1063/1.466179 DOI

Piecuch P., Kucharski S. A., and Bartlett R. J., J. Chem. Phys. 110, 6103 (1999).10.1063/1.478517 DOI

Piecuch P. and Włoch M., J. Chem. Phys. 123, 224105 (2005).10.1063/1.2137318 PubMed DOI

Piecuch P., Włoch M., Gour J. R., and Kinal A., Chem. Phys. Lett. 418, 467 (2006).10.1016/j.cplett.2005.10.116 DOI

Wloch M., Gour J. R., and Piecuch P., J. Phys. Chem. A 111, 11359 (2007).10.1021/jp072535l PubMed DOI

See https://openforcefield.org for OpenForceField.

Wu J. C., Chattree G., and Ren P., Theor. Chem. Acc. 131, 1138 (2012).10.1007/s00214-012-1138-6 PubMed DOI PMC

McDaniel J. G. and Schmidt J., Annu. Rev. Phys. Chem. 67, 467 (2016).10.1146/annurev-physchem-040215-112047 PubMed DOI

Rackers J. A., Liu C., Ren P., and Ponder J. W., J. Chem. Phys. 149, 084115 (2019).10.1063/1.5030434 PubMed DOI PMC

Liu C., Piquemal J.-P., and Ren P., J. Chem. Theory Comput. 15, 4122 (2019).10.1021/acs.jctc.9b00261 PubMed DOI PMC

Bayly C. I., Cieplak P., Cornell W. D., and Kollman P. A., J. Phys. Chem. 97, 10269 (1993).10.1021/j100142a004 DOI

Franz K., Schnell I., Meurer A., and Sarahan M., CONDA: OS-agnostic, system-level binary package manager and ecosystem. For the current version, see https://github.com/conda/conda; accessed January 2020. For documentation, see https://conda.io/en/latest/.

Sarahan M., Meurer A., Donnelly R., and Schnell I., CONDA-BUILD: Commands and tools for building conda packages. For the current version, see https://github.com/conda/conda-build; accessed January 2020.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...