Computational Design of Photosensitive Polymer Templates To Drive Molecular Nanofabrication
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38545921
PubMed Central
PMC11008366
DOI
10.1021/acsnano.3c10575
Knihovny.cz E-zdroje
- Klíčová slova
- DNA analogue, ab initio calculations, computational screening, hydrogen bonded system, molecular electronics, nanofabrication, self-assembly,
- Publikační typ
- časopisecké články MeSH
Molecular electronics promises the ultimate level of miniaturization of computers and other machines as organic molecules are the smallest known physical objects with nontrivial structure and function. But despite the plethora of molecular switches, memories, and motors developed during the almost 50-years long history of molecular electronics, mass production of molecular computers is still an elusive goal. This is mostly due to the lack of scalable nanofabrication methods capable of rapidly producing complex structures (similar to silicon chips or living cells) with atomic precision and a small number of defects. Living nature solves this problem by using linear polymer templates encoding large volumes of structural information into sequence of hydrogen bonded end groups which can be efficiently replicated and which can drive assembly of other molecular components into complex supramolecular structures. In this paper, we propose a nanofabrication method based on a class of photosensitive polymers inspired by these natural principles, which can operate in concert with UV photolithography used for fabrication of current microelectronic processors. We believe that such a method will enable a smooth transition from silicon toward molecular nanoelectronics and photonics. To demonstrate its feasibility, we performed a computational screening of candidate molecules that can selectively bind and therefore allow the deterministic assembly of molecular components. In the process, we unearthed trends and design principles applicable beyond the immediate scope of our proposed nanofabrication method, e.g., to biologically relevant DNA analogues and molecular recognition within hydrogen-bonded systems.
Zobrazit více v PubMed
Zhang K.; Wang C.; Zhang M.; Bai Z.; Xie F.-F.; Tan Y.-Z.; Guo Y.; Hu K.-J.; Cao L.; Zhang S.; Tu X.; Pan D.; Kang L.; Chen J.; Wu P.; Wang X.; Wang J.; Liu J.; Song Y.; Wang G.; et al. A Gd@C82 Single-Molecule Electret. Nat. Nanotechnol. 2020, 15, 1019–1024. 10.1038/s41565-020-00778-z. PubMed DOI
Zhang J. L.; Zhong J. Q.; Lin J. D.; Hu W. P.; Wu K.; Xu G. Q.; Wee A. T. S.; Chen W. Towards Single Molecule Switches. Chem. Soc. Rev. 2015, 44, 2998–3022. 10.1039/C4CS00377B. PubMed DOI
Aviram A.; Ratner M. A. Molecular Rectifiers. Chem. Phys. Lett. 1974, 29, 277–283. 10.1016/0009-2614(74)85031-1. DOI
Kushmerick J. Molecular Transistors Scrutinized. Nature 2009, 462, 994–995. 10.1038/462994a. PubMed DOI
Luo Y.; Collier C. P.; Jeppesen J. O.; Nielsen K. A.; DeIonno E.; Ho G.; Perkins J.; Tseng H.-R.; Yamamoto T.; Stoddart J. F.; Heath J. R. Two-Dimensional Molecular Electronics Circuits. ChemPhysChem. 2002, 3, 519–525. 10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2. PubMed DOI
Green J. E.; Choi J. W.; Boukai A.; Bunimovich Y.; Johnston-Halperin E.; DeIonno E.; Luo Y.; Sheriff B. A.; Xu K.; Shin Y. S.; Tseng H.-R.; Stoddart J. F.; Heath J. R. A 160-Kilobit Molecular Electronic Memory Patterned at 1011 Bits per Square Centimetre. Nature 2007, 445, 414–417. 10.1038/nature05462. PubMed DOI
Browne W. R.; Feringa B. L. Making Molecular Machines Work. Nat. Nanotechnol. 2006, 1, 25–35. 10.1038/nnano.2006.45. PubMed DOI
Li J.; Ballmer S. G.; Gillis E. P.; Fujii S.; Schmidt M. J.; Palazzolo A. M. E.; Lehmann J. W.; Morehouse G. F.; Burke M. D. Synthesis of Many Different Types of Organic Small Molecules Using One Automated Process. Science 2015, 347, 1221–1226. 10.1126/science.aaa5414. PubMed DOI PMC
Jaroš A.; Bonab E. F.; Straka M.; Foroutan-Nejad C. Fullerene-Based Switching Molecular Diodes Controlled by Oriented External Electric Fields. J. Am. Chem. Soc. 2019, 141, 19644–19654. 10.1021/jacs.9b07215. PubMed DOI
Castellanos M. A.; Dodin A.; Willard A. P. On the Design of Molecular Excitonic Circuits for Quantum Computing: the Universal Quantum Gates. Phys. Chem. Chem. Phys. 2020, 22, 3048–3057. 10.1039/C9CP05625D. PubMed DOI
Doležal J.; Canola S.; Hapala P.; de Campos Ferreira R. C.; Merino P.; Švec M. Real Space Visualization of Entangled Excitonic States in Charged Molecular Assemblies. ACS Nano 2022, 16, 1082–1088. 10.1021/acsnano.1c08816. PubMed DOI
Liljeroth P.; Repp J.; Meyer G. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules. Science 2007, 317, 1203–1206. 10.1126/science.1144366. PubMed DOI
Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. 10.1126/science.1176210. PubMed DOI
Gross L.; Schuler B.; Pavliček N.; Fatayer S.; Majzik Z.; Moll N.; Peña D.; Meyer G. Atomic Force Microscopy for Molecular Structure Elucidation. Angew. Chem., Int. Ed. 2018, 57, 3888–3908. 10.1002/anie.201703509. PubMed DOI
Steurer W.; Fatayer S.; Gross L.; Meyer G. Probe-Based Measurement of Lateral Single-Electron Transfer Between Individual Molecules. Nat. Commun. 2015, 6, 8353.10.1038/ncomms9353. PubMed DOI PMC
Fatayer S.; Albrecht F.; Zhang Y.; Urbonas D.; Peña D.; Moll N.; Gross L. Molecular Structure Elucidation with Charge-State Control. Science 2019, 365, 142–145. 10.1126/science.aax5895. PubMed DOI
Leinen P.; Esders M.; Schütt K. T.; Wagner C.; Müller K.-R.; Tautz F. S. Autonomous Robotic Nanofabrication with Reinforcement Learning. Sci. Adv. 2020, 6, eabb698710.1126/sciadv.abb6987. PubMed DOI PMC
Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. (Washington, DC, U. S.) 2019, 119, 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Slater A. G.; Perdigão L. M. A.; Beton P. H.; Champness N. R. Surface-Based Supramolecular Chemistry Using Hydrogen Bonds. Acc. Chem. Res. 2014, 47, 3417–3427. 10.1021/ar5001378. PubMed DOI
Corpinot M. K.; Bučar D.-K. A Practical Guide to the Design of Molecular Crystals. Cryst. Growth Des. 2019, 19, 1426–1453. 10.1021/acs.cgd.8b00972. DOI
Conti S.; Cecchini M. Predicting Molecular Self-Assembly at Surfaces: a Statistical Thermodynamics and Modeling Approach. Phys. Chem. Chem. Phys. 2016, 18, 31480–31493. 10.1039/C6CP05249E. PubMed DOI
Shang J.; Wang Y.; Chen M.; Dai J.; Zhou X.; Kuttner J.; Hilt G.; Shao X.; Gottfried J. M.; Wu K. Assembling Molecular Sierpiński Triangle Fractals. Nat. Chem. 2015, 7, 389–393. 10.1038/nchem.2211. PubMed DOI
Abel G. R.; Cao B. H.; Hein J. E.; Ye T. Covalent, sequence-specific attachment of long DNA molecules to a surface using DNA-templated click chemistry. Chem. Commun. 2014, 50, 8131–8133. 10.1039/C4CC02900C. PubMed DOI
Li X.; Liu D. R. DNA-Templated Organic Synthesis: Nature’s Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules. Angew. Chem., Int. Ed. 2004, 43, 4848–4870. 10.1002/anie.200400656. PubMed DOI
Rothemund P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. 10.1038/nature04586. PubMed DOI
Hong F.; Zhang F.; Liu Y.; Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem. Rev. (Washington, DC, U. S.) 2017, 117, 12584–12640. 10.1021/acs.chemrev.6b00825. PubMed DOI
Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; Yan H.; Zhan P. DNA Origami. Nat. Rev. Methods Primers 2021, 1, 13.10.1038/s43586-020-00009-8. DOI
Zhan P.; Peil A.; Jiang Q.; Wang D.; Mousavi S.; Xiong Q.; Shen Q.; Shang Y.; Ding B.; Lin C.; Ke Y.; Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem. Rev. (Washington, DC, U. S.) 2023, 123, 3976–4050. 10.1021/acs.chemrev.3c00028. PubMed DOI PMC
Richter A.; Haapasilta V.; Venturini C.; Bechstein R.; Gourdon A.; Foster A. S.; Kühnle A. Diacetylene Polymerization on a Bulk Insulator Surface. Phys. Chem. Chem. Phys. 2017, 19, 15172–15176. 10.1039/C7CP01526G. PubMed DOI
Okawa Y.; Akai-Kasaya M.; Kuwahara Y.; Mandal S. K.; Aono M. Controlled Chain Polymerisation and Chemical Soldering for Single-Molecule Electronics. Nanoscale 2012, 4, 3013–3028. 10.1039/c2nr30245d. PubMed DOI
Repp J.; Meyer G.; Stojković S. M.; Gourdon A.; Joachim C. Molecules on Insulating Films: Scanning-Tunneling Microscopy Imaging of Individual Molecular Orbitals. Phys. Rev. Lett. 2005, 94, 026803.10.1103/PhysRevLett.94.026803. PubMed DOI
Kaiser K.; Lieske L.-A.; Repp J.; Gross L. Charge-State Lifetimes of Single Molecules on Few Monolayers of NaCl. Nat. Commun. 2023, 14, 4988.10.1038/s41467-023-40692-1. PubMed DOI PMC
Lu Y.; Liu M.; Lent C. Molecular Quantum-Dot Cellular Automata: from Molecular Structure to Circuit Dynamics. J. Appl. Phys. 2007, 102, 034311.10.1063/1.2767382. DOI
Pigot C.; Dumur F. Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. Materials 2019, 12, 662.10.3390/ma12040662. PubMed DOI PMC
Treier M.; Pignedoli C. A.; Laino T.; Rieger R.; Müllen K.; Passerone D.; Fasel R. Surface-Assisted Cyclodehydrogenation Provides a Synthetic Route towards Easily Processable and Chemically Tailored Nanographenes. Nat. Chem. 2011, 3, 61–67. 10.1038/nchem.891. PubMed DOI
Fan Q.; Luy J.-N.; Liebold M.; Greulich K.; Zugermeier M.; Sundermeyer J.; Tonner R.; Gottfried J. M. Template-Controlled On-Surface Synthesis of a Lanthanide Supernaphthalocyanine and Its Open-Chain Polycyanine Counterpart. Nat. Commun. 2019, 10, 5049.10.1038/s41467-019-13030-7. PubMed DOI PMC
Fan Q.; Dai J.; Wang T.; Kuttner J.; Hilt G.; Gottfried J. M.; Zhu J. Confined Synthesis of Organometallic Chains and Macrocycles by Cu-O Surface Templating. ACS Nano 2016, 10, 3747–3754. 10.1021/acsnano.6b00366. PubMed DOI
Bansal A.; Kaushik S.; Kukreti S. Non-Canonical DNA Structures: Diversity and Disease Association. Front. Genet. 2022, 13, 959258.10.3389/fgene.2022.959258. PubMed DOI PMC
D’Ascenzo L.; Auffinger P. A Comprehensive Classification and Nomenclature of Carboxyl-Carboxyl(ate) Supramolecular Motifs and Related Catemers: Implications for Biomolecular Systems. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 164–175. 10.1107/S205252061500270X. PubMed DOI PMC
van der Lubbe S. C. C.; Fonseca Guerra C. The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths. Chem. - Asian J. 2019, 14, 2760–2769. 10.1002/asia.201900717. PubMed DOI PMC
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: an Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4, 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Rappe A. K.; Casewit C. J.; Colwell K. S.; Goddard III W. A.; Skiff W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. 10.1021/ja00051a040. DOI
Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitricǎ T.; Dominguez A.; Ehlert S.; Elstner M.; van der Heide T.; Hermann J.; Irle S.; Kranz J. J.; Köhler C.; Kowalczyk T.; Kubař T.; Lee I. S.; et al. DFTB+, a Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152, 124101.10.1063/1.5143190. PubMed DOI
Řezáč J. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. J. Chem. Theory Comput. 2017, 13, 4804–4817. 10.1021/acs.jctc.7b00629. PubMed DOI
Smith D. G. A.; Burns L. A.; Simmonett A. C.; Parrish R. M.; Schieber M. C.; Galvelis R.; Kraus P.; Kruse H.; Di Remigio R.; Alenaizan A.; James A. M.; Lehtola S.; Misiewicz J. P.; Scheurer M.; Shaw R. A.; Schriber J. B.; Xie Y.; Glick Z. L.; Sirianni D. A.; O’Brien J. S.; et al. PSI4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152, 184108.10.1063/5.0006002. PubMed DOI PMC
Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
van Duijneveldt F. B.; van Duijneveldt-van de Rijdt J. G. C. M.; van Lenthe J. H. State of the Art in Counterpoise Theory. Chem. Rev. (Washington, DC, U. S.) 1994, 94 (7), 1873–1885. 10.1021/cr00031a007. DOI
Burns L. A.; Faver J. C.; Zheng Z.; Marshall M. S.; Smith D. G. A.; Vanommeslaeghe K.; MacKerell A. D. Jr; Merz K. M. Jr; Sherrill C. D. The BioFragment Database (BFDb): An Open-Data Platform for Computational Chemistry Analysis of Noncovalent Interactions. J. Chem. Phys. 2017, 147, 161727.10.1063/1.5001028. PubMed DOI PMC
Jurečka P.; Šponer J.; Černý J.; Hobza P. Benchmark Database of Accurate (MP2 and CCSD(T) Complete Basis Set Limit) Interaction Energies of Small Model Complexes, DNA Base Pairs, and Amino Acid Pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993. 10.1039/B600027D. PubMed DOI