Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GACR 15-21285J
Grantová Agentura České Republiky - International
GACR 17-15374S
Grantová Agentura České Republiky - International
ERDF,project No. CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy - International
ERDF project No. CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy - International
PubMed
32452768
PubMed Central
PMC7292647
DOI
10.7554/elife.56817
PII: 56817
Knihovny.cz E-zdroje
- Klíčová slova
- axial patterning, body plan, branchiostoma floridae, branchiostoma lanceolatum, developmental biology, evolution, evolutionary biology, wnt/β-catenin signaling,
- MeSH
- beta-katenin metabolismus MeSH
- biologická evoluce MeSH
- HEK293 buňky MeSH
- kopinatci embryologie metabolismus MeSH
- lidé MeSH
- protein goosecoid metabolismus MeSH
- protein nodal metabolismus MeSH
- protein Smad2 metabolismus MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-katenin MeSH
- protein goosecoid MeSH
- protein nodal MeSH
- protein Smad2 MeSH
Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus, whereas Wnt/β-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/βcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/β-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/β-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/β-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.
Zobrazit více v PubMed
Agius E, Oelgeschläger M, Wessely O, Kemp C, De Robertis EM. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development. 2000;127:1173–1183. PubMed PMC
Arendt D, Nübler-Jung K. Inversion of dorsoventral axis? Nature. 1994;371:26. doi: 10.1038/371026a0. PubMed DOI
Beddington RS. Induction of a second neural Axis by the mouse node. Development. 1994;120:613–620. PubMed
Bellipanni G, Varga M, Maegawa S, Imai Y, Kelly C, Myers AP, Chu F, Talbot WS, Weinberg ES. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development. 2006;133:1299–1309. doi: 10.1242/dev.02295. PubMed DOI
Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J. Vg 1 is an essential signaling molecule in Xenopus development. Development. 2006;133:15–20. doi: 10.1242/dev.02144. PubMed DOI
Bozzo M, Pergner J, Kozmik Z, Kozmikova I. Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. The International Journal of Developmental Biology. 2017;61:793–800. doi: 10.1387/ijdb.170259ik. PubMed DOI
Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J. Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus Axis formation. Development. 2008;135:3719–3729. doi: 10.1242/dev.029025. PubMed DOI
Chea HK, Wright CV, Swalla BJ. Nodal signaling and the evolution of deuterostome gastrulation. Developmental Dynamics. 2005;234:269–278. doi: 10.1002/dvdy.20549. PubMed DOI
Collignon J, Varlet I, Robertson EJ. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature. 1996;381:155–158. doi: 10.1038/381155a0. PubMed DOI
Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM. Spemann organizer Transcriptome induction by early beta-catenin, wnt, Nodal, and siamois signals in Xenopus laevis. PNAS. 2017;114:E3081–E3090. doi: 10.1073/pnas.1700766114. PubMed DOI PMC
Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS. The role of the zebrafish nodal-related genes squint and Cyclops in patterning of mesendoderm. Development. 2003;130:1837–1851. doi: 10.1242/dev.00400. PubMed DOI
Duboc V, Röttinger E, Besnardeau L, Lepage T. Nodal and BMP2/4 signaling organizes the oral-aboral Axis of the sea urchin embryo. Developmental Cell. 2004;6:397–410. doi: 10.1016/S1534-5807(04)00056-5. PubMed DOI
Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Developmental Cell. 2005;9:147–158. doi: 10.1016/j.devcel.2005.05.008. PubMed DOI
Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature. 1998;395:181–185. doi: 10.1038/26013. PubMed DOI
Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Frontiers in Molecular Neuroscience. 2012;5:14. doi: 10.3389/fnmol.2012.00014. PubMed DOI PMC
Fuentes M, Benito E, Bertrand S, Paris M, Mignardot A, Godoy L, Jimenez-Delgado S, Oliveri D, Candiani S, Hirsinger E, D'Aniello S, Pascual-Anaya J, Maeso I, Pestarino M, Vernier P, Nicolas J-F, Schubert M, Laudet V, Geneviere AM, Albalat R, Garcia Fernandez J, Holland ND, Escriva H. Insights into spawning behavior and development of the european amphioxus (Branchiostoma lanceolatum) Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2007;308B:484–493. doi: 10.1002/jez.b.21179. PubMed DOI
Grande C, Patel NH. Nodal signalling is involved in left-right asymmetry in snails. Nature. 2009;457:1007–1011. doi: 10.1038/nature07603. PubMed DOI PMC
Gritsman K, Talbot WS, Schier AF. Nodal signaling patterns the organizer. Development. 2000;127:921–932. PubMed
Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell. 1994;79:791–803. doi: 10.1016/0092-8674(94)90069-8. PubMed DOI
Henry JQ, Perry KJ, Wever J, Seaver E, Martindale MQ. Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus. Developmental Biology. 2008;317:368–379. doi: 10.1016/j.ydbio.2008.02.042. PubMed DOI
Henry JQ, Perry KJ, Martindale MQ. β-catenin and early development in the gastropod, Crepidula fornicata. Integrative and Comparative Biology. 2010;50:707–719. doi: 10.1093/icb/icq076. PubMed DOI
Hirakow R, Kajita N. An electron microscopic study of the development of Amphioxus, Branchiostoma belcheri tsingtauense: cleavage. Journal of Morphology. 1990;203:331–344. doi: 10.1002/jmor.1052030308. PubMed DOI
Hirakow R, Kajita N. Electron microscopic study of the development of Amphioxus, Branchiostoma belcheri tsingtauense: the gastrula. Journal of Morphology. 1991;207:37–52. doi: 10.1002/jmor.1052070106. PubMed DOI
Hirakow R, Kajita N. Electron microscopic study of the development of Amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Kaibogaku Zasshi. 1994;69:1–13. PubMed
Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbächer U, Holstein TW. WNT signalling molecules act in Axis formation in the diploblastic metazoan Hydra. Nature. 2000;407:186–189. doi: 10.1038/35025063. PubMed DOI
Holland LZ, Panfilio KA, Chastain R, Schubert M, Holland ND. Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Developmental Dynamics. 2005;233:1430–1443. doi: 10.1002/dvdy.20473. PubMed DOI
Holland LZ, Holland ND. A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integrative and Comparative Biology. 2007;47:360–372. doi: 10.1093/icb/icm064. PubMed DOI
Holland LZ, Onai T. Early development of cephalochordates (amphioxus) Wiley Interdisciplinary Reviews: Developmental Biology. 2012;1:167–183. doi: 10.1002/wdev.11. PubMed DOI
Hoodless PA, Tsukazaki T, Nishimatsu S, Attisano L, Wrana JL, Thomsen GH. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt Axis formation in Xenopus. Developmental Biology. 1999;207:364–379. doi: 10.1006/dbio.1998.9168. PubMed DOI
Hoppler S, Moon RT. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mechanisms of Development. 1998;71:119–129. doi: 10.1016/S0925-4773(98)00004-5. PubMed DOI
Houston DW. Advances in Experimental Medicine and Biology. In: Pelegri FDM, Sutherland A, editors. Vertebrate Development. Springer; 2017a. pp. 209–306. PubMed DOI
Houston DW. Vertebrate axial patterning: from egg to asymmetry. Advances in Experimental Medicine and Biology. 2017b;953:209–306. doi: 10.1007/978-3-319-46095-6_6. PubMed DOI PMC
Imai K, Takada N, Satoh N, Satou Y. Beta)-catenin mediates the specification of endoderm cells in ascidian embryos. Development. 2000;127:3009–3020. PubMed
Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development. 1995;121:3651–3662. PubMed
Kelly C, Chin AJ, Leatherman JL, Kozlowski DJ, Weinberg ES. Beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development. 2000;127:3899–3911. PubMed
Kjolby RAS, Harland RM. Genome-wide identification of wnt/β-catenin transcriptional targets during Xenopus gastrulation. Developmental Biology. 2017;426:165–175. doi: 10.1016/j.ydbio.2016.03.021. PubMed DOI PMC
Kozmik Z, Holland LZ, Schubert M, Lacalli TC, Kreslova J, Vlcek C, Holland ND. Characterization of amphioxus AmphiVent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis. 2001;29:172–179. doi: 10.1002/gene.1021. PubMed DOI
Kozmikova I, Smolikova J, Vlcek C, Kozmik Z. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. PLOS ONE. 2011;6:e14650. doi: 10.1371/journal.pone.0014650. PubMed DOI PMC
Kozmikova I, Candiani S, Fabian P, Gurska D, Kozmik Z. Essential role of bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Developmental Biology. 2013;382:538–554. doi: 10.1016/j.ydbio.2013.07.021. PubMed DOI
Kozmikova I, Yu JK. Dorsal-ventral patterning in amphioxus: current understanding, unresolved issues, and future directions. The International Journal of Developmental Biology. 2017;61:601–610. doi: 10.1387/ijdb.170236ik. PubMed DOI
Kraus Y, Aman A, Technau U, Genikhovich G. Pre-bilaterian origin of the blastoporal axial organizer. Nature Communications. 2016;7:11694. doi: 10.1038/ncomms11694. PubMed DOI PMC
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral Axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoOS Biology. 2009;7:e1000248. doi: 10.1371/journal.pbio.1000248. PubMed DOI PMC
Lapraz F, Haillot E, Lepage T. A deuterostome origin of the spemann organiser suggested by nodal and ADMPs functions in echinoderms. Nature Communications. 2015;6:8434. doi: 10.1038/ncomms9434. PubMed DOI PMC
Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT. Establishment of the dorso-ventral Axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the wnt signaling pathway. Journal of Cell Biology. 1997;136:1123–1136. doi: 10.1083/jcb.136.5.1123. PubMed DOI PMC
Le Petillon Y, Luxardi G, Scerbo P, Cibois M, Leon A, Subirana L, Irimia M, Kodjabachian L, Escriva H, Bertrand S. Nodal/Activin pathway is a conserved neural induction signal in chordates. Nature Ecology & Evolution. 2017;1:1192–1200. doi: 10.1038/s41559-017-0226-3. PubMed DOI PMC
Lee MA, Heasman J, Whitman M. Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development. 2001;128:2939–2952. PubMed
Li G, Liu X, Xing C, Zhang H, Shimeld SM, Wang Y. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus. PNAS. 2017;114:3684–3689. doi: 10.1073/pnas.1620519114. PubMed DOI PMC
Logan CY, Miller JR, Ferkowicz MJ, McClay DR. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development. 1999;126:345–357. PubMed
Lu FI, Thisse C, Thisse B. Identification and mechanism of regulation of the zebrafish dorsal determinant. PNAS. 2011;108:15876–15880. doi: 10.1073/pnas.1106801108. PubMed DOI PMC
Martyn I, Kanno TY, Ruzo A, Siggia ED, Brivanlou AH. Self-organization of a human organizer by combined wnt and nodal signalling. Nature. 2018;558:132–135. doi: 10.1038/s41586-018-0150-y. PubMed DOI PMC
McKendry R, Hsu SC, Harland RM, Grosschedl R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Developmental Biology. 1997;192:420–431. doi: 10.1006/dbio.1997.8797. PubMed DOI
McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic Axis. Cell. 1989;58:1075–1084. doi: 10.1016/0092-8674(89)90506-0. PubMed DOI
Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT. Establishment of the dorsal-ventral Axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. The Journal of Cell Biology. 1999;146:427–438. doi: 10.1083/jcb.146.2.427. PubMed DOI PMC
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biology. 2016;6:160062. doi: 10.1098/rsob.160062. PubMed DOI PMC
Nakamura Y, de Paiva Alves E, Veenstra GJ, Hoppler S. Tissue- and stage-specific wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules. Development. 2016;143:1914–1925. doi: 10.1242/dev.131664. PubMed DOI PMC
Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP. Wnt3alinks left-right determination with segmentation and anteroposterior Axis elongation. Development. 2005;132:5425–5436. doi: 10.1242/dev.02149. PubMed DOI PMC
Niederländer C, Walsh JJ, Episkopou V, Jones CM. Arkadia enhances nodal-related signalling to induce mesendoderm. Nature. 2001;410:830–834. doi: 10.1038/35071103. PubMed DOI
Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ. Retinoic acid and wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Developmental Biology. 2009;332:223–233. doi: 10.1016/j.ydbio.2009.05.571. PubMed DOI
Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ. Opposing nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental Biology. 2010;344:377–389. doi: 10.1016/j.ydbio.2010.05.016. PubMed DOI PMC
Onai T. Canonical wnt/β-catenin and notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evolution & Development. 2019;21:31–43. doi: 10.1111/ede.12273. PubMed DOI
Onuma Y, Takahashi S, Yokota C, Asashima M. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Developmental Biology. 2002;241:94–105. doi: 10.1006/dbio.2001.0493. PubMed DOI
Oppenheimer JM. Transplantation experiments on developing teleosts (Fundulus and Perca) Journal of Experimental Zoology. 1936;72:409–437. doi: 10.1002/jez.1400720304. DOI
Osada SI, Wright CV. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development. 1999;126:3229–3240. PubMed
Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body Axis. Cell. 2009;139:1056–1068. doi: 10.1016/j.cell.2009.11.035. PubMed DOI
Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996;86:589–598. doi: 10.1016/S0092-8674(00)80132-4. PubMed DOI PMC
Qian G, Li G, Chen X, Wang Y. Characterization and embryonic expression of four amphioxus frizzled genes with important functions during early embryogenesis. Gene Expression Patterns. 2013;13:445–453. doi: 10.1016/j.gep.2013.08.003. PubMed DOI
Ramel MC, Buckles GR, Baker KD, Lekven AC. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Developmental Biology. 2005;287:237–248. doi: 10.1016/j.ydbio.2005.08.012. PubMed DOI
Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral Axis formation by Univin, a TGF-beta related to Vg1. Development. 2007;134:3649–3664. doi: 10.1242/dev.007799. PubMed DOI
Reid CD, Zhang Y, Sheets MD, Kessler DS. Transcriptional integration of wnt and nodal pathways in establishment of the spemann organizer. Developmental Biology. 2012;368:231–241. doi: 10.1016/j.ydbio.2012.05.018. PubMed DOI PMC
Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, Wagman AS, Hammond ME, Harrison SD. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003;52:588–595. doi: 10.2337/diabetes.52.3.588. PubMed DOI
Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell. 1997;90:707–716. doi: 10.1016/S0092-8674(00)80531-0. PubMed DOI
Roeser T, Stein S, Kessel M. Nuclear beta-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. Development. 1999;126:2955–2965. PubMed
Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochemical and Biophysical Research Communications. 2001;280:720–725. doi: 10.1006/bbrc.2000.4169. PubMed DOI
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLOS Genetics. 2010;6:e1001259. doi: 10.1371/journal.pgen.1001259. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schneider S, Steinbeisser H, Warga RM, Hausen P. Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mechanisms of Development. 1996;57:191–198. doi: 10.1016/0925-4773(96)00546-1. PubMed DOI
Schneider SQ, Bowerman B. beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Developmental Cell. 2007;13:73–86. doi: 10.1016/j.devcel.2007.05.002. PubMed DOI
Schohl A, Fagotto F. Beta-catenin, MAPK and smad signaling during early Xenopus development. Development. 2002;129:37–52. PubMed
Schubert M, Holland LZ, Holland ND. Characterization of an amphioxus wnt gene, AmphiWnt11, with possible roles in Myogenesis and tail outgrowth. Genesis. 2000a;27:1–5. doi: 10.1002/1526-968X(200005)27:1<1::AID-GENE10>3.0.CO;2-3. PubMed DOI
Schubert M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND. Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral Axis. Evolution and Development. 2000b;2:85–92. doi: 10.1046/j.1525-142x.2000.00047.x. PubMed DOI
Shimizu N, Kawakami K, Ishitani T. Visualization and exploration of tcf/Lef function using a highly responsive wnt/β-catenin signaling-reporter transgenic zebrafish. Developmental Biology. 2012;370:71–85. doi: 10.1016/j.ydbio.2012.07.016. PubMed DOI
Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Developmental Biology. 2011;357:478–491. doi: 10.1016/j.ydbio.2011.06.010. PubMed DOI PMC
Smith WC, Harland RM. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell. 1991;67:753–765. doi: 10.1016/0092-8674(91)90070-F. PubMed DOI
Sokol S, Christian JL, Moon RT, Melton DA. Injected wnt RNA induces a complete body Axis in Xenopus embryos. Cell. 1991;67:741–752. doi: 10.1016/0092-8674(91)90069-B. PubMed DOI
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Seminars in Cell & Developmental Biology. 2015;42:78–85. doi: 10.1016/j.semcdb.2015.05.002. PubMed DOI PMC
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biology. 2018;19:98. doi: 10.1186/s13059-018-1468-3. PubMed DOI PMC
Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK. The nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo. 2015;6:5. doi: 10.1186/2041-9139-6-5. PubMed DOI PMC
Spemann H, Mangold H. über induktion von embryonalanlagen durch implantation artfremder organisatoren. Archiv Für Mikroskopische Anatomie Und Entwicklungsmechanik. 1924;100:599–638. doi: 10.1007/BF02108133. DOI
Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M. Two novel nodal-related genes initiate early inductive events in Xenopus nieuwkoop center. Development. 2000;127:5319–5329. PubMed
Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J. Maternal wnt11 activates the canonical wnt signaling pathway required for Axis formation in Xenopus embryos. Cell. 2005;120:857–871. doi: 10.1016/j.cell.2005.01.013. PubMed DOI
Tung TC, Yeh YF. Experimental studies on neural induction in amphioxus. Shi Yan Sheng Wu Xue Bao. 1961;7:263–270. PubMed
Waddington CH, Schmidt GA. Induction by heteroplastic grafts of the primitive streak in birds. Wilhelm Roux' Archiv fr Entwicklungsmechanik der Organismen. 1933;128:522–563. doi: 10.1007/BF00649863. PubMed DOI
Watanabe H, Schmidt HA, Kuhn A, Höger SK, Kocagöz Y, Laumann-Lipp N, Ozbek S, Holstein TW. Nodal signalling determines biradial asymmetry in Hydra. Nature. 2014;515:112–115. doi: 10.1038/nature13666. PubMed DOI
Weaver C, Farr GH. GBP binds kinesin light chain and translocates during cortical rotation in Xenopus eggs. Development. 2003;130:5425–5436. doi: 10.1242/dev.00737. PubMed DOI
Wikramanayake AH, Huang L, Klein WH. beta-Catenin is essential for patterning the maternally specified animal-vegetal Axis in the sea urchin embryo. PNAS. 1998;95:9343–9348. doi: 10.1073/pnas.95.16.9343. PubMed DOI PMC
Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J. The roles of three signaling pathways in the formation and function of the spemann organizer. Development. 2002;129:4027–4043. PubMed
Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C. Construction of a vertebrate embryo from two opposing morphogen gradients. Science. 2014;344:87–89. doi: 10.1126/science.1248252. PubMed DOI
Yaguchi S, Yaguchi J, Angerer RC, Angerer LM. A Wnt-FoxQ2-nodal pathway links primary and secondary Axis specification in sea urchin embryos. Developmental Cell. 2008;14:97–107. doi: 10.1016/j.devcel.2007.10.012. PubMed DOI
Yang J, Tan C, Darken RS, Wilson PA, Klein PS. Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development. 2002;129:5743–5752. doi: 10.1242/dev.00150. PubMed DOI
Yasui K, Li G, Wang Y, Saiga H, Zhang P, Aizawa S. beta-Catenin in early development of the lancelet embryo indicates specific determination of embryonic polarity. Development, Growth and Differentiation. 2002;44:467–475. doi: 10.1046/j.1440-169X.2002.00659.x. PubMed DOI
Yasui K. Early development of amphioxus links evolutionary events with vertebrates. The International Journal of Developmental Biology. 2017;61:591–600. doi: 10.1387/ijdb.170118ky. PubMed DOI
Yasuoka Y, Tando Y, Kubokawa K, Taira M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. Zoological Letters. 2019;5:27. doi: 10.1186/s40851-019-0143-1. PubMed DOI PMC
Yong LW, Kozmikova I, Jk Y. Using amphioxus as a basal chordate model to study BMP signaling pathway. Methods in Molecular Biology. 1891;2019:91–114. doi: 10.1007/978-1-4939-8904-1_8. PubMed DOI
Yu JK, Holland ND, Holland LZ. AmphiFoxQ2, a novel winged Helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Development Genes and Evolution. 2003;213:102–105. doi: 10.1007/s00427-003-0302-3. PubMed DOI
Yu JK, Satou Y, Holland ND, Shin-I T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ. Axial patterning in cephalochordates and the evolution of the organizer. Nature. 2007;445:613–617. doi: 10.1038/nature05472. PubMed DOI
Zhang M, Zhang J, Lin SC, Meng A. β-Catenin 1 and β-catenin 2 play similar and distinct roles in left-right asymmetric development of zebrafish embryos. Development. 2012;139:2009–2019. doi: 10.1242/dev.074435. PubMed DOI
Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature. 1993;361:543–547. doi: 10.1038/361543a0. PubMed DOI
Zinski J, Tajer B, Mullins MC. TGF-β family signaling in early vertebrate development. Cold Spring Harbor Perspectives in Biology. 2018;10:a033274. doi: 10.1101/cshperspect.a033274. PubMed DOI PMC
Ancestral role of Pax6 in chordate brain regionalization