Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32455542
PubMed Central
PMC7291080
DOI
10.3390/cells9051265
PII: cells9051265
Knihovny.cz E-resources
- Keywords
- cumulus cells, gene expression, human, programmed cell death,
- MeSH
- Principal Component Analysis MeSH
- Biomarkers metabolism MeSH
- Cell Death genetics MeSH
- Cell Culture Techniques methods MeSH
- Time Factors MeSH
- Adult MeSH
- Gene Ontology MeSH
- Gene Regulatory Networks MeSH
- Cumulus Cells cytology metabolism MeSH
- Humans MeSH
- Gene Expression Regulation MeSH
- Reproducibility of Results MeSH
- Gene Expression Profiling * MeSH
- Cellular Senescence genetics MeSH
- Cell Shape genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
In the ovarian follicle, maturation of the oocyte increases in the presence of somatic cells called cumulus cells (CCs). These cells form a direct barrier between the oocyte and external environment. Thanks to bidirectional communication, they have a direct impact on the oocyte, its quality and development potential. Understanding the genetic profile of CCs appears to be important in elucidating the physiology of oocytes. Long-term in vitro culture of CCs collected from patients undergoing controlled ovarian stimulation during in vitro fertilization procedure was conducted. Using microarray expression analysis, transcript levels were assessed on day 1, 7, 15, and 30 of culture. Apoptosis and aging of CCs strictly influence oocyte quality and subsequently the outcome of assisted reproductive technologies (ART). Thus, particular attention was paid to the analysis of genes involved in programmed cell death, aging, and apoptosis. Due to the detailed level of expression analysis of each of the 133 analyzed genes, three groups were selected: first with significantly decreased expression during the culture; second with the statistically lowest increase in expression; and third with the highest significant increase in expression. COL3A1, SFRP4, CTGF, HTR2B, VCAM1, TNFRSF11B genes, belonging to the third group, were identified as potential carriers of information on oocyte quality.
Department of Anatomy Poznan University of Medical Sciences 6 Swiecickiego St 60 781 Poznan Poland
Department of Toxicology Poznan University of Medical Sciences 30 Dojazd St 60 631 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
See more in PubMed
Chermuła B., Brązert M., Iżycki D., Ciesiółka S., Kranc W., Celichowski P., Ożegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed. Res. Int. 2019;2019:1–12. doi: 10.1155/2019/6545210. PubMed DOI PMC
Faramarzi A., Khalili M.A., Jahromi M.G. Is there any correlation between apoptotic genes expression in cumulus cells with embryo morphokinetics? Mol. Biol. Rep. 2019;46:3663–3670. doi: 10.1007/s11033-019-04781-z. PubMed DOI
Chermuła B., Brązert M., Jeseta M., Ożegowska K., Kocherova I., Jankowski M., Celichowski P., Sujka-Kordowska P., Konwerska A., Piotrowska-Kempisty H., et al. Transcriptomic Pattern of Genes Regulating Protein Response and Status of Mitochondrial Activity Are Related to Oocyte Maturational Competence—A Transcriptomic Study. Int. J. Mol. Sci. 2019;20:2238. doi: 10.3390/ijms20092238. PubMed DOI PMC
Ribeiro A., Freitas C., Matos L., Gouveia A., Gomes F., Silva Carvalho J.L., Almeida H. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J. Assist. Reprod. Genet. 2017;34:1121–1129. doi: 10.1007/s10815-017-0930-6. PubMed DOI PMC
Biase F.H., Kimble K.M. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells. BMC Genom. 2018;19:351. doi: 10.1186/s12864-018-4738-2. PubMed DOI PMC
Emanuelli I.P., Costa C.B., Rafagnin Marinho L.S., Seneda M.M., Meirelles F.V. Cumulus-oocyte interactions and programmed cell death in bovine embryos produced in vitro. Theriogenology. 2019;126:81–87. doi: 10.1016/j.theriogenology.2018.11.028. PubMed DOI
Macaulay A.D., Gilbert I., Scantland S., Fournier E., Ashkar F., Bastien A., Saadi H.A.S., Gagné D., Sirard M.-A., Khandjian É.W., et al. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation. Biol. Reprod. 2016;94:16. doi: 10.1095/biolreprod.114.127571. PubMed DOI PMC
Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.-A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014;91:90. doi: 10.1095/biolreprod.114.119867. PubMed DOI
Kong Q.-Q., Wang J., Xiao B., Lin F.-H., Zhu J., Sun G.-Y., Luo M.-J., Tan J.-H. Cumulus cell-released tumor necrosis factor (TNF)-α promotes post-ovulatory aging of mouse oocytes. Aging (Albany. NY) 2018;10:1745–1757. doi: 10.18632/aging.101507. PubMed DOI PMC
Krysko D.V., Leybaert L., Vandenabeele P., D’Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis. 2005;10:459–469. doi: 10.1007/s10495-005-1875-2. PubMed DOI
Fuchs Y., Steller H. Programmed Cell Death in Animal Development and Disease. Cell. 2011;147:742–758. doi: 10.1016/j.cell.2011.10.033. PubMed DOI PMC
Domínguez F., Cejudo F.J. Programmed cell death (PCD): An essential process of cereal seed development and germination. Front. Plant Sci. 2014;5:366. doi: 10.3389/fpls.2014.00366. PubMed DOI PMC
Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC
Zhu J., Zhang J., Li H., Wang T.Y., Zhang C.X., Luo M.J., Tan J.H. Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice. Sci. Rep. 2015;5:8683. doi: 10.1038/srep08683. PubMed DOI PMC
Zhu J., Lin F.-H., Zhang J., Lin J., Li H., Li Y.-W., Tan X.-W., Tan J.-H. The signaling pathways by which the Fas/FasL system accelerates oocyte aging. Aging (Albany. NY) 2016;8:291–303. doi: 10.18632/aging.100893. PubMed DOI PMC
Celichowski P., Nawrocki M.J., Dyszkiewicz-Konwińska M., Jankowski M., Budna J., Bryja A., Kranc W., Borys S., Knap S., Ciesiółka S., et al. “Positive Regulation of RNA Metabolic Process” Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach. Biomed. Res. Int. 2018;2018:1–10. doi: 10.1155/2018/2863068. PubMed DOI PMC
Chamier-Gliszczyńska A., Brązert M., Sujka-Kordowska P., Popis M., Ożegowska K., Stefańska K., Kocherova I., Celichowski P., Kulus M., Bukowska D., et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture–a transcriptomic study. Med. J. Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI
Kranc W., Brązert M., Ożegowska K., Budna-Tukan J., Celichowski P., Jankowski M., Bryja A., Nawrocki M.J., Popis M., Jeseta M., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med. J. Cell Biol. 2018;6:91–100. doi: 10.2478/acb-2018-0015. DOI
Dias F.C.F., Khan M.I.R., Sirard M.A., Adams G.P., Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genom. 2018;19:258. doi: 10.1186/s12864-018-4642-9. PubMed DOI PMC
Nawrocki M.J., Celichowski P., Jankowski M., Kranc W., Bryja A., Borys-Wójcik S., Jeseta M., Antosik P., Bukowska D., Bruska M., et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. Med. J. Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI
Chronowska E. High-Throughput Analysis of Ovarian Granulosa Cell Transcriptome. Biomed. Res. Int. 2014;2014:1–7. doi: 10.1155/2014/213570. PubMed DOI PMC
Chermuła B., Brązert M., Jeseta M., Ożegowska K., Sujka-Kordowska P., Konwerska A., Bryja A., Kranc W., Jankowski M., Nawrocki M.J., et al. The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis are Regulated through Oocyte Maturational Development-A Complete Transcriptomic and Histochemical Study. Int. J. Mol. Sci. 2018;20:84. doi: 10.3390/ijms20010084. PubMed DOI PMC
Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W. Ovarian follicular cells - living in the shadow of stemness cellular competence. J. Cell Boil. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI
Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI
Kulus M., Józkowiak M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Bukowska D., Brüssow K.P., et al. “Cell Cycle Process”, “Cell Division” and “Cell Proliferation” Belong To Ontology Groups Highly Regulated During Long-Term Culture of Porcine Oviductal Epithelial Cells. Med. J. Cell Biol. 2019;7:15–24. doi: 10.2478/acb-2019-0003. DOI
Chamier-Gliszczyńska A., Kałuzna S., Stefańska K., Celichowski P., Antosik P., Bukowska D., Bruska M., Zakova J., Machatkova M., Jeseta M., et al. Analysis of expression of genes responsible for regulation of cellular proliferation and migration-Microarray approach based on porcine oocyte model. Med. J. Cell Biol. 2019;7:48–57. doi: 10.2478/acb-2019-0007. DOI
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Huang D., Sherman B.T., Tan Q., Collins J.R., Alvord W.G., Roayaei J., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183. doi: 10.1186/gb-2007-8-9-r183. PubMed DOI PMC
Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI
GEO Accession viewer. [(accessed on 20 May 2020)]; Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149033.
Rybska M., Knap S., Jankowsk M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Dumesic D.A., Meldrum D.R., Katz-Jaffe M.G., Krisher R.L., Schoolcraft W.B. Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertil. Steril. 2015;103:303–316. doi: 10.1016/j.fertnstert.2014.11.015. PubMed DOI
Ashkenazi H., Cao X., Motola S., Popliker M., Conti M., Tsafriri A. Epidermal growth factor family members: Endogenous mediators of the ovulatory response. Endocrinology. 2005;146:77–84. doi: 10.1210/en.2004-0588. PubMed DOI
Ruvolo G., Bosco L., Pane A., Morici G., Cittadini E., Roccheri M.C. Lower apoptosis rate in human cumulus cells after administration of recombinant luteinizing hormone to women undergoing ovarian stimulation for in vitro fertilization procedures. Fertil. Steril. 2007;87:542–546. doi: 10.1016/j.fertnstert.2006.06.059. PubMed DOI
Bosco L., Chiarelli R., Roccheri M.C., Matranga D., Ruvolo G. Relationship between apoptosis and survival molecules in human cumulus cells as markers of oocyte competence. Zygote. 2017;25:583–591. doi: 10.1017/S0967199417000429. PubMed DOI
Wells D., Patrizio P. Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am. J. Obstet. Gynecol. 2008;198:455-e1. doi: 10.1016/j.ajog.2007.12.030. PubMed DOI
Stefańska K., Józkowiak M., Antosik P., Bukowska D., Celichowski P., Bruska M., Nowicki M., Kempisty B., Zakova J., Machatkova M., et al. Genes regulating programmed cell death are significantly upregulated in porcine immature oocytes. Med. J. Cell Biol. 2019;7:1–10. doi: 10.2478/acb-2019-0001. DOI
Kulus M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Brüssow K.P., Kempisty B., Jeseta M. ‘ Cell cycle ’ and ‘ cell death ’-related genes are differentially expressed during long–term in vitro real-time cultivation of porcine oviductal epithelial cells. Med. J. Cell Biol. 2019;7:90–99. doi: 10.2478/acb-2019-0012. DOI
Moffatt O., Drury S., Tomlinson M., Afnan M., Sakkas D. The apoptotic profile of human cumulus cells changes with patient age and after exposure to sperm but not in relation to oocyte maturity. Fertil. Steril. 2002;77:1006–1011. doi: 10.1016/S0015-0282(02)02951-5. PubMed DOI
Nasr M.S.M., Khedr E.G.E., Mansour A.M.A., Sakr A.E.I., Rammah A.M. Apoptosis in human cumulus cells (CCs) in relation to intracytoplasmic sperm injection (ICSI) outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;206:e169. doi: 10.1016/j.ejogrb.2016.07.418. DOI
Al-Edani T., Assou S., Ferrières A., Bringer Deutsch S., Gala A., Lecellier C.-H., Aït-Ahmed O., Hamamah S. Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality. Biomed. Res. Int. 2014;2014:1–10. doi: 10.1155/2014/964614. PubMed DOI PMC
Stolina M., Dwyer D., Ominsky M.S., Corbin T., Van G., Bolon B., Sarosi I., McCabe J., Zack D.J., Kostenuik P. Continuous RANKL Inhibition in Osteoprotegerin Transgenic Mice and Rats Suppresses Bone Resorption without Impairing Lymphorganogenesis or Functional Immune Responses. J. Immunol. 2007;11:7497–7505. doi: 10.4049/jimmunol.179.11.7497. PubMed DOI
Boerboom D., White L.D., Dalle S., Courty J., Richards J.A.S. Dominant-stable β-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model. Cancer Res. 2006;66:1964–1973. doi: 10.1158/0008-5472.CAN-05-3493. PubMed DOI
Osborn L., Hession C., Tizard R., Vassallo C., Luhowskyj S., Chi-Rosso G., Lobb R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59:1203–1211. doi: 10.1016/0092-8674(89)90775-7. PubMed DOI
Candelaria N.R., Padmanabhan A., Stossi F., Cecilia Ljungberg M., Shelly K.E., Pew B.K., Solis M., Rossano A.M., McAllister J.M., Wu S., et al. VCAM1 is induced in ovarian theca and stromal cells in a mouse model of androgen excess. Endocrinology. 2019;160:1377–1393. doi: 10.1210/en.2018-00731. PubMed DOI PMC
Henriksen R., Dizeyi N., Abrahamsson P.A. Expression of serotonin receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in ovary and in ovarian tumours. Anticancer Res. 2012;32:1361–1366. PubMed
Kannisto P., Owman C., Schmidt G., Sjöberg N. O Characterization of presynaptic 5-HT receptors on adrenergic nerves supplying the bovine ovarian follicle. Br. J. Pharmacol. 1987;92:487. doi: 10.1111/j.1476-5381.1987.tb11348.x. PubMed DOI PMC
Dubé F., Amireault P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 2007;81:1627–1637. doi: 10.1016/j.lfs.2007.09.034. PubMed DOI
Amireault P., Dubé F. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharmacol. 2005;68:1678–1687. doi: 10.1124/mol.104.010124. PubMed DOI
Tesarik J., Sousa M. More than 90% fertilization rates after intracytoplasmic sperm injection and artificial induction of oocyte activation with calcium ionophore. Fertil. Steril. 1995;63:343–349. doi: 10.1016/S0015-0282(16)57366-X. PubMed DOI
Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res. 2016;363:169–183. doi: 10.1007/s00441-015-2291-8. PubMed DOI PMC
Winterhager E., Gellhaus A. The role of the CCN family of proteins in female reproduction. Cell. Mol. Life Sci. 2014;71:2299–2311. doi: 10.1007/s00018-014-1556-9. PubMed DOI PMC
Slee R.B., Hillier S.G., Largue P., Harlow C.R., Miele G., Clinton M. Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology. 2001;142:1082–1089. doi: 10.1210/endo.142.3.7990. PubMed DOI
Harlow C.R., Bradshaw A.C., Rae M.T., Shearer K.D., Hillier S.G. Oestrogen formation and connective tissue growth factor expression in rat granulosa cells. J. Endocrinol. 2007;192:41–52. doi: 10.1677/joe.1.06689. PubMed DOI
Duncan W.C., Hillier S.G., Gay E., Bell J., Fraser H.M. Connective tissue growth factor expression in the human corpus luteum: Paracrine regulation by human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 2005;90:5366–5376. doi: 10.1210/jc.2005-0014. PubMed DOI
Maman E., Yung Y., Cohen B., Konopnicki S., Dal Canto M., Fadini R., Kanety H., Kedem A., Dor J., Hourvitz A. Expression and regulation of sFRP family members in human granulosa cells. Mol. Hum. Reprod. 2011;17:399–404. doi: 10.1093/molehr/gar010. PubMed DOI
Drake J.M., Friis R.R., Dharmarajan A.M. The role of sFRP4, a secreted frizzled-related protein, in ovulation. Apoptosis. 2003;8:389–397. doi: 10.1023/A:1024181203729. PubMed DOI
Zamberlam G., Lapointe E., Abedini A., Rico C., Godin P., Paquet M., DeMayo F.J., Boerboom D. SFRP4 Is a Negative Regulator of Ovarian Follicle Development and Female Fertility. Endocrinology. 2019;160:1561–1572. doi: 10.1210/en.2019-00212. PubMed DOI PMC
Assou S., Haouzi D., Dechaud H., Gala A., Ferrières A., Hamamah S. Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments. Biomed. Res. Int. 2013;2013:354582. doi: 10.1155/2013/354582. PubMed DOI PMC
Tong Z.B., Gold L., Pfeifer K.E., Dorward H., Lee E., Bondy C.A., Dean J., Nelson L.M. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 2000;26:267–268. doi: 10.1038/81547. PubMed DOI
Gao J., Liu D., Li J., Song Q., Wang Q. Effect of STK17A on the sensitivity of ovarian cancer cells to paclitaxel and carboplatin. Oncol. Lett. 2016;12:1107–1112. doi: 10.3892/ol.2016.4727. PubMed DOI PMC
Xiong Y., Dresser K., Cornejo K.M. Frequent TLE1 Expression in Cutaneous Neoplasms. Am. J. Dermatopathol. 2019;41:1–6. doi: 10.1097/DAD.0000000000001186. PubMed DOI
Zheng L., Li L., Lu Y., Jiang F., Yang X.A. SREBP2 contributes to cisplatin resistance in ovarian cancer cells. Exp. Biol. Med. 2018;243:655–662. doi: 10.1177/1535370218760283. PubMed DOI PMC
Kim S.W., Lim C.M., Kim J.B., Shin J.H., Lee S., Lee M., Lee J.K. Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox. Res. 2011;20:159–169. doi: 10.1007/s12640-010-9231-x. PubMed DOI
Ni X.R., Sun Z.J., Hu G.H., Wang R.H. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular hmgb1. Reprod. Sci. 2015;22:271–277. doi: 10.1177/1933719114549852. PubMed DOI
Donaldson J.G., Jackson C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 2011;12:362–375. doi: 10.1038/nrm3117. PubMed DOI PMC
Kanamarlapudi V. Centaurin-α1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem. Soc. Trans. 2005;33:1279–1281. doi: 10.1042/BST0331279. PubMed DOI