• This record comes from PubMed

Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers

. 2020 May 21 ; 9 (5) : . [epub] 20200521

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

In the ovarian follicle, maturation of the oocyte increases in the presence of somatic cells called cumulus cells (CCs). These cells form a direct barrier between the oocyte and external environment. Thanks to bidirectional communication, they have a direct impact on the oocyte, its quality and development potential. Understanding the genetic profile of CCs appears to be important in elucidating the physiology of oocytes. Long-term in vitro culture of CCs collected from patients undergoing controlled ovarian stimulation during in vitro fertilization procedure was conducted. Using microarray expression analysis, transcript levels were assessed on day 1, 7, 15, and 30 of culture. Apoptosis and aging of CCs strictly influence oocyte quality and subsequently the outcome of assisted reproductive technologies (ART). Thus, particular attention was paid to the analysis of genes involved in programmed cell death, aging, and apoptosis. Due to the detailed level of expression analysis of each of the 133 analyzed genes, three groups were selected: first with significantly decreased expression during the culture; second with the statistically lowest increase in expression; and third with the highest significant increase in expression. COL3A1, SFRP4, CTGF, HTR2B, VCAM1, TNFRSF11B genes, belonging to the third group, were identified as potential carriers of information on oocyte quality.

See more in PubMed

Chermuła B., Brązert M., Iżycki D., Ciesiółka S., Kranc W., Celichowski P., Ożegowska K., Nawrocki M.J., Jankowski M., Jeseta M., et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed. Res. Int. 2019;2019:1–12. doi: 10.1155/2019/6545210. PubMed DOI PMC

Faramarzi A., Khalili M.A., Jahromi M.G. Is there any correlation between apoptotic genes expression in cumulus cells with embryo morphokinetics? Mol. Biol. Rep. 2019;46:3663–3670. doi: 10.1007/s11033-019-04781-z. PubMed DOI

Chermuła B., Brązert M., Jeseta M., Ożegowska K., Kocherova I., Jankowski M., Celichowski P., Sujka-Kordowska P., Konwerska A., Piotrowska-Kempisty H., et al. Transcriptomic Pattern of Genes Regulating Protein Response and Status of Mitochondrial Activity Are Related to Oocyte Maturational Competence—A Transcriptomic Study. Int. J. Mol. Sci. 2019;20:2238. doi: 10.3390/ijms20092238. PubMed DOI PMC

Ribeiro A., Freitas C., Matos L., Gouveia A., Gomes F., Silva Carvalho J.L., Almeida H. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J. Assist. Reprod. Genet. 2017;34:1121–1129. doi: 10.1007/s10815-017-0930-6. PubMed DOI PMC

Biase F.H., Kimble K.M. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells. BMC Genom. 2018;19:351. doi: 10.1186/s12864-018-4738-2. PubMed DOI PMC

Emanuelli I.P., Costa C.B., Rafagnin Marinho L.S., Seneda M.M., Meirelles F.V. Cumulus-oocyte interactions and programmed cell death in bovine embryos produced in vitro. Theriogenology. 2019;126:81–87. doi: 10.1016/j.theriogenology.2018.11.028. PubMed DOI

Macaulay A.D., Gilbert I., Scantland S., Fournier E., Ashkar F., Bastien A., Saadi H.A.S., Gagné D., Sirard M.-A., Khandjian É.W., et al. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation. Biol. Reprod. 2016;94:16. doi: 10.1095/biolreprod.114.127571. PubMed DOI PMC

Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.-A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014;91:90. doi: 10.1095/biolreprod.114.119867. PubMed DOI

Kong Q.-Q., Wang J., Xiao B., Lin F.-H., Zhu J., Sun G.-Y., Luo M.-J., Tan J.-H. Cumulus cell-released tumor necrosis factor (TNF)-α promotes post-ovulatory aging of mouse oocytes. Aging (Albany. NY) 2018;10:1745–1757. doi: 10.18632/aging.101507. PubMed DOI PMC

Krysko D.V., Leybaert L., Vandenabeele P., D’Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis. 2005;10:459–469. doi: 10.1007/s10495-005-1875-2. PubMed DOI

Fuchs Y., Steller H. Programmed Cell Death in Animal Development and Disease. Cell. 2011;147:742–758. doi: 10.1016/j.cell.2011.10.033. PubMed DOI PMC

Domínguez F., Cejudo F.J. Programmed cell death (PCD): An essential process of cereal seed development and germination. Front. Plant Sci. 2014;5:366. doi: 10.3389/fpls.2014.00366. PubMed DOI PMC

Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC

Zhu J., Zhang J., Li H., Wang T.Y., Zhang C.X., Luo M.J., Tan J.H. Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice. Sci. Rep. 2015;5:8683. doi: 10.1038/srep08683. PubMed DOI PMC

Zhu J., Lin F.-H., Zhang J., Lin J., Li H., Li Y.-W., Tan X.-W., Tan J.-H. The signaling pathways by which the Fas/FasL system accelerates oocyte aging. Aging (Albany. NY) 2016;8:291–303. doi: 10.18632/aging.100893. PubMed DOI PMC

Celichowski P., Nawrocki M.J., Dyszkiewicz-Konwińska M., Jankowski M., Budna J., Bryja A., Kranc W., Borys S., Knap S., Ciesiółka S., et al. “Positive Regulation of RNA Metabolic Process” Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach. Biomed. Res. Int. 2018;2018:1–10. doi: 10.1155/2018/2863068. PubMed DOI PMC

Chamier-Gliszczyńska A., Brązert M., Sujka-Kordowska P., Popis M., Ożegowska K., Stefańska K., Kocherova I., Celichowski P., Kulus M., Bukowska D., et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture–a transcriptomic study. Med. J. Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI

Kranc W., Brązert M., Ożegowska K., Budna-Tukan J., Celichowski P., Jankowski M., Bryja A., Nawrocki M.J., Popis M., Jeseta M., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med. J. Cell Biol. 2018;6:91–100. doi: 10.2478/acb-2018-0015. DOI

Dias F.C.F., Khan M.I.R., Sirard M.A., Adams G.P., Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genom. 2018;19:258. doi: 10.1186/s12864-018-4642-9. PubMed DOI PMC

Nawrocki M.J., Celichowski P., Jankowski M., Kranc W., Bryja A., Borys-Wójcik S., Jeseta M., Antosik P., Bukowska D., Bruska M., et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. Med. J. Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI

Chronowska E. High-Throughput Analysis of Ovarian Granulosa Cell Transcriptome. Biomed. Res. Int. 2014;2014:1–7. doi: 10.1155/2014/213570. PubMed DOI PMC

Chermuła B., Brązert M., Jeseta M., Ożegowska K., Sujka-Kordowska P., Konwerska A., Bryja A., Kranc W., Jankowski M., Nawrocki M.J., et al. The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis are Regulated through Oocyte Maturational Development-A Complete Transcriptomic and Histochemical Study. Int. J. Mol. Sci. 2018;20:84. doi: 10.3390/ijms20010084. PubMed DOI PMC

Moncrieff L., Mozdziak P., Jeseta M., Machatkova M., Kranc W. Ovarian follicular cells - living in the shadow of stemness cellular competence. J. Cell Boil. 2019;7:134–140. doi: 10.2478/acb-2019-0018. DOI

Stefańska K., Sibiak R., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Jeseta M., Kempisty B., Machatkova M., Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med. J. Cell Biol. 2019;7:183–188. doi: 10.2478/acb-2019-0025. DOI

Kulus M., Józkowiak M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Bukowska D., Brüssow K.P., et al. “Cell Cycle Process”, “Cell Division” and “Cell Proliferation” Belong To Ontology Groups Highly Regulated During Long-Term Culture of Porcine Oviductal Epithelial Cells. Med. J. Cell Biol. 2019;7:15–24. doi: 10.2478/acb-2019-0003. DOI

Chamier-Gliszczyńska A., Kałuzna S., Stefańska K., Celichowski P., Antosik P., Bukowska D., Bruska M., Zakova J., Machatkova M., Jeseta M., et al. Analysis of expression of genes responsible for regulation of cellular proliferation and migration-Microarray approach based on porcine oocyte model. Med. J. Cell Biol. 2019;7:48–57. doi: 10.2478/acb-2019-0007. DOI

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Huang D., Sherman B.T., Tan Q., Collins J.R., Alvord W.G., Roayaei J., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183. doi: 10.1186/gb-2007-8-9-r183. PubMed DOI PMC

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

GEO Accession viewer. [(accessed on 20 May 2020)]; Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149033.

Rybska M., Knap S., Jankowsk M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Dumesic D.A., Meldrum D.R., Katz-Jaffe M.G., Krisher R.L., Schoolcraft W.B. Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertil. Steril. 2015;103:303–316. doi: 10.1016/j.fertnstert.2014.11.015. PubMed DOI

Ashkenazi H., Cao X., Motola S., Popliker M., Conti M., Tsafriri A. Epidermal growth factor family members: Endogenous mediators of the ovulatory response. Endocrinology. 2005;146:77–84. doi: 10.1210/en.2004-0588. PubMed DOI

Ruvolo G., Bosco L., Pane A., Morici G., Cittadini E., Roccheri M.C. Lower apoptosis rate in human cumulus cells after administration of recombinant luteinizing hormone to women undergoing ovarian stimulation for in vitro fertilization procedures. Fertil. Steril. 2007;87:542–546. doi: 10.1016/j.fertnstert.2006.06.059. PubMed DOI

Bosco L., Chiarelli R., Roccheri M.C., Matranga D., Ruvolo G. Relationship between apoptosis and survival molecules in human cumulus cells as markers of oocyte competence. Zygote. 2017;25:583–591. doi: 10.1017/S0967199417000429. PubMed DOI

Wells D., Patrizio P. Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am. J. Obstet. Gynecol. 2008;198:455-e1. doi: 10.1016/j.ajog.2007.12.030. PubMed DOI

Stefańska K., Józkowiak M., Antosik P., Bukowska D., Celichowski P., Bruska M., Nowicki M., Kempisty B., Zakova J., Machatkova M., et al. Genes regulating programmed cell death are significantly upregulated in porcine immature oocytes. Med. J. Cell Biol. 2019;7:1–10. doi: 10.2478/acb-2019-0001. DOI

Kulus M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Brüssow K.P., Kempisty B., Jeseta M. ‘ Cell cycle ’ and ‘ cell death ’-related genes are differentially expressed during long–term in vitro real-time cultivation of porcine oviductal epithelial cells. Med. J. Cell Biol. 2019;7:90–99. doi: 10.2478/acb-2019-0012. DOI

Moffatt O., Drury S., Tomlinson M., Afnan M., Sakkas D. The apoptotic profile of human cumulus cells changes with patient age and after exposure to sperm but not in relation to oocyte maturity. Fertil. Steril. 2002;77:1006–1011. doi: 10.1016/S0015-0282(02)02951-5. PubMed DOI

Nasr M.S.M., Khedr E.G.E., Mansour A.M.A., Sakr A.E.I., Rammah A.M. Apoptosis in human cumulus cells (CCs) in relation to intracytoplasmic sperm injection (ICSI) outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;206:e169. doi: 10.1016/j.ejogrb.2016.07.418. DOI

Al-Edani T., Assou S., Ferrières A., Bringer Deutsch S., Gala A., Lecellier C.-H., Aït-Ahmed O., Hamamah S. Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality. Biomed. Res. Int. 2014;2014:1–10. doi: 10.1155/2014/964614. PubMed DOI PMC

Stolina M., Dwyer D., Ominsky M.S., Corbin T., Van G., Bolon B., Sarosi I., McCabe J., Zack D.J., Kostenuik P. Continuous RANKL Inhibition in Osteoprotegerin Transgenic Mice and Rats Suppresses Bone Resorption without Impairing Lymphorganogenesis or Functional Immune Responses. J. Immunol. 2007;11:7497–7505. doi: 10.4049/jimmunol.179.11.7497. PubMed DOI

Boerboom D., White L.D., Dalle S., Courty J., Richards J.A.S. Dominant-stable β-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model. Cancer Res. 2006;66:1964–1973. doi: 10.1158/0008-5472.CAN-05-3493. PubMed DOI

Osborn L., Hession C., Tizard R., Vassallo C., Luhowskyj S., Chi-Rosso G., Lobb R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59:1203–1211. doi: 10.1016/0092-8674(89)90775-7. PubMed DOI

Candelaria N.R., Padmanabhan A., Stossi F., Cecilia Ljungberg M., Shelly K.E., Pew B.K., Solis M., Rossano A.M., McAllister J.M., Wu S., et al. VCAM1 is induced in ovarian theca and stromal cells in a mouse model of androgen excess. Endocrinology. 2019;160:1377–1393. doi: 10.1210/en.2018-00731. PubMed DOI PMC

Henriksen R., Dizeyi N., Abrahamsson P.A. Expression of serotonin receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in ovary and in ovarian tumours. Anticancer Res. 2012;32:1361–1366. PubMed

Kannisto P., Owman C., Schmidt G., Sjöberg N. O Characterization of presynaptic 5-HT receptors on adrenergic nerves supplying the bovine ovarian follicle. Br. J. Pharmacol. 1987;92:487. doi: 10.1111/j.1476-5381.1987.tb11348.x. PubMed DOI PMC

Dubé F., Amireault P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 2007;81:1627–1637. doi: 10.1016/j.lfs.2007.09.034. PubMed DOI

Amireault P., Dubé F. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharmacol. 2005;68:1678–1687. doi: 10.1124/mol.104.010124. PubMed DOI

Tesarik J., Sousa M. More than 90% fertilization rates after intracytoplasmic sperm injection and artificial induction of oocyte activation with calcium ionophore. Fertil. Steril. 1995;63:343–349. doi: 10.1016/S0015-0282(16)57366-X. PubMed DOI

Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res. 2016;363:169–183. doi: 10.1007/s00441-015-2291-8. PubMed DOI PMC

Winterhager E., Gellhaus A. The role of the CCN family of proteins in female reproduction. Cell. Mol. Life Sci. 2014;71:2299–2311. doi: 10.1007/s00018-014-1556-9. PubMed DOI PMC

Slee R.B., Hillier S.G., Largue P., Harlow C.R., Miele G., Clinton M. Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology. 2001;142:1082–1089. doi: 10.1210/endo.142.3.7990. PubMed DOI

Harlow C.R., Bradshaw A.C., Rae M.T., Shearer K.D., Hillier S.G. Oestrogen formation and connective tissue growth factor expression in rat granulosa cells. J. Endocrinol. 2007;192:41–52. doi: 10.1677/joe.1.06689. PubMed DOI

Duncan W.C., Hillier S.G., Gay E., Bell J., Fraser H.M. Connective tissue growth factor expression in the human corpus luteum: Paracrine regulation by human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 2005;90:5366–5376. doi: 10.1210/jc.2005-0014. PubMed DOI

Maman E., Yung Y., Cohen B., Konopnicki S., Dal Canto M., Fadini R., Kanety H., Kedem A., Dor J., Hourvitz A. Expression and regulation of sFRP family members in human granulosa cells. Mol. Hum. Reprod. 2011;17:399–404. doi: 10.1093/molehr/gar010. PubMed DOI

Drake J.M., Friis R.R., Dharmarajan A.M. The role of sFRP4, a secreted frizzled-related protein, in ovulation. Apoptosis. 2003;8:389–397. doi: 10.1023/A:1024181203729. PubMed DOI

Zamberlam G., Lapointe E., Abedini A., Rico C., Godin P., Paquet M., DeMayo F.J., Boerboom D. SFRP4 Is a Negative Regulator of Ovarian Follicle Development and Female Fertility. Endocrinology. 2019;160:1561–1572. doi: 10.1210/en.2019-00212. PubMed DOI PMC

Assou S., Haouzi D., Dechaud H., Gala A., Ferrières A., Hamamah S. Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments. Biomed. Res. Int. 2013;2013:354582. doi: 10.1155/2013/354582. PubMed DOI PMC

Tong Z.B., Gold L., Pfeifer K.E., Dorward H., Lee E., Bondy C.A., Dean J., Nelson L.M. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 2000;26:267–268. doi: 10.1038/81547. PubMed DOI

Gao J., Liu D., Li J., Song Q., Wang Q. Effect of STK17A on the sensitivity of ovarian cancer cells to paclitaxel and carboplatin. Oncol. Lett. 2016;12:1107–1112. doi: 10.3892/ol.2016.4727. PubMed DOI PMC

Xiong Y., Dresser K., Cornejo K.M. Frequent TLE1 Expression in Cutaneous Neoplasms. Am. J. Dermatopathol. 2019;41:1–6. doi: 10.1097/DAD.0000000000001186. PubMed DOI

Zheng L., Li L., Lu Y., Jiang F., Yang X.A. SREBP2 contributes to cisplatin resistance in ovarian cancer cells. Exp. Biol. Med. 2018;243:655–662. doi: 10.1177/1535370218760283. PubMed DOI PMC

Kim S.W., Lim C.M., Kim J.B., Shin J.H., Lee S., Lee M., Lee J.K. Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox. Res. 2011;20:159–169. doi: 10.1007/s12640-010-9231-x. PubMed DOI

Ni X.R., Sun Z.J., Hu G.H., Wang R.H. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular hmgb1. Reprod. Sci. 2015;22:271–277. doi: 10.1177/1933719114549852. PubMed DOI

Donaldson J.G., Jackson C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 2011;12:362–375. doi: 10.1038/nrm3117. PubMed DOI PMC

Kanamarlapudi V. Centaurin-α1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem. Soc. Trans. 2005;33:1279–1281. doi: 10.1042/BST0331279. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...