Application of High-Pressure Processing to Assure the Storage Stability of Unfiltered Lager Beer

. 2020 May 21 ; 25 (10) : . [epub] 20200521

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32455848

Grantová podpora
TE02000177 Technology Agency of the Czech Republic

Due to the increasing popularity of unfiltered beer, new methods for its preservation are needed. High-pressure processing (HPP) was applied as a final treatment of packed beer in order to assure storage stability and to retain the desired product quality. Pressures of 250 MPa and 550 MPa for 5 min were used to process unfiltered lager beers. The impact of pressure on basic analytical characteristics was evaluated, and foam stability, the content of carbonyl compounds and sensory properties were monitored during two months of storage. Most of the basic analytical parameters remained unaffected after pressure treatment, and a beneficial effect on foam stability was demonstrated. Changes in the concentration of staling aldehydes were observed during storage. Some features of the sensory profile were affected by HPP as well as by the time of storage. Our study evaluated the suitability of HPP as a novel method for shelf-life extension of unfiltered lager beer.

Zobrazit více v PubMed

Gómez-Corona C., Escalona-Buendía H.B., García M., Chollet S., Valentin D. Craft vs. industrial: Habits, attitudes and motivations towards beer consumption in Mexico. Appetite. 2016;96:358–367. PubMed

Mastanjević K., Krstanović V., Lukinac J., Jukić M., Lučan M., Mastanjević K. Craft brewing–is it really about the sensory revolution? Kvas. Prum. 2019;65:13–16. doi: 10.18832/kp2019.65.13. DOI

Bamforth C.W. Nutritional aspects of beer—A review. Nutr. Res. 2002;22:227–237. doi: 10.1016/S0271-5317(01)00360-8. DOI

Ferreira I., Pinho O., Vieira E., Tavarela J. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010;21:77–84. doi: 10.1016/j.tifs.2009.10.008. DOI

Stier H., Ebbeskotte V., Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1, 3/1, 6-D-glucan. Nutr. J. 2014;13:38. doi: 10.1186/1475-2891-13-38. PubMed DOI PMC

Giannetti V., Mariani M.B., Torrelli P., Marini F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019;149:103991. doi: 10.1016/j.microc.2019.103991. DOI

Donadini G., Porretta S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017;91:183–198. doi: 10.1016/j.foodres.2016.11.043. PubMed DOI

Choi D.Y., Stack M.H. The all-American beer: A case of inferior standard (taste) prevailing? Bus. Horiz. 2005;48:79–86. doi: 10.1016/j.bushor.2004.10.016. DOI

Vanderhaegen B., Neven H., Verachtert H., Derdelinckx G. The chemistry of beer aging–a critical review. Food Chem. 2006;95:357–381. doi: 10.1016/j.foodchem.2005.01.006. DOI

Wray E. Brewing Microbiology. Elsevier; Amsterdam, The Netherlands: 2015. Reducing microbial spoilage of beer using pasteurization; pp. 253–269.

Cao L., Zhou G., Guo P., Li Y. Influence of pasteurising intensity on beer flavour stability. J. Inst. Brew. 2011;117:587–592. doi: 10.1002/j.2050-0416.2011.tb00508.x. DOI

Hoff S., Lund M.N., Petersen M.A., Frank W., Andersen M.L. Storage stability of pasteurized non-filtered beer. J. Inst. Brew. 2013;119:172–181. doi: 10.1002/jib.85. DOI

Garofalo C., Osimani A., Milanović V., Taccari M., Aquilanti L., Clementi F. The occurrence of beer spoilage lactic acid bacteria in craft beer production. J. Food Sci. 2015;80:M2845–M2852. doi: 10.1111/1750-3841.13112. PubMed DOI

Maifreni M., Frigo F., Bartolomeoli I., Buiatti S., Picon S., Marino M. Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control. 2015;50:809–814. doi: 10.1016/j.foodcont.2014.10.032. DOI

Huang H.-W., Wu S.-J., Lu J.-K., Shyu Y.-T., Wang C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control. 2017;72:1–8. doi: 10.1016/j.foodcont.2016.07.019. DOI

Muntean M.-V., Marian O., Barbieru V., Cătunescu G.M., Ranta O., Drocas I., Terhes S. High pressure processing in food industry–characteristics and applications. Agric. Agric. Sci. Procedia. 2016;10:377–383. doi: 10.1016/j.aaspro.2016.09.077. DOI

Kurowska A., Szajkowska A., van der Meulen B. High Pressure Processing of Food. Springer; Berlin, Germany: 2016. EU regulatory approach to high-pressure processing; pp. 717–732.

Santos L.M., Oliveira F.A., Ferreira E.H., Rosenthal A. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review. Food Sci. Technol. Int. 2017;23:561–581. doi: 10.1177/1082013217714670. PubMed DOI

Buzrul S., Alpas H., Bozoglu F. Effect of high hydrostatic pressure on quality parameters of lager beer. J. Sci. Food Agric. 2005;85:1672–1676. doi: 10.1002/jsfa.2166. DOI

Castellari M., Arfelli G., Riponi C., Carpi G., Amati A. High hydrostatic pressure treatments for beer stabilization. J. Food Sci. 2000;65:974–977. doi: 10.1111/j.1365-2621.2000.tb09402.x. DOI

Yin H., Dong J., Yu J., Chang Z., Qian Z., Liu M., Huang S., Hu X., Liu X., Deng Y. A preliminary study about the influence of high hydrostatic pressure processing on the physicochemical and sensorial properties of a cloudy wheat beer. J. Inst. Brew. 2016;122:462–467. doi: 10.1002/jib.344. DOI

Daher D., Le Gourrierec S., Pérez-Lamela C. Effect of high-pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agriculture. 2017;7:72. doi: 10.3390/agriculture7090072. DOI

Hartmann C., Mathmann K., Delgado A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2006;7:1–12. doi: 10.1016/j.ifset.2005.06.005. DOI

Perrier-Cornet J.M., Hayert M., Gervais P. Yeast cell mortality related to a high-pressure shift: Occurrence of cell membrane permeabilization. J. Appl. Microbiol. 1999;87:1–7. doi: 10.1046/j.1365-2672.1999.00779.x. PubMed DOI

Evans D.E., Bamforth C.W. Beer: A Quality Perspective. Master Brewers Association of Americas; Madison, WI, USA: 2009. Beer foam: Achieving a suitable head; pp. 1–60.

Kosin P., Branyik T., Savel J., Ulmann F., Vlcek J. Use of Sorbents to Increase Beer Foam Stability. J. Am. Soc. Brew. Chem. 2018;76:58–61. doi: 10.1080/03610470.2017.1398565. DOI

He G.-Q., Wang Z.-Y., Liu Z.-S., Chen Q.-H., Ruan H., Schwarz P.B. Relationship of proteinase activity, foam proteins, and head retention in unpasteurized beer. J. Am. Soc. Brew. Chem. 2006;64:33–38. doi: 10.1094/ASBCJ-64-0033. DOI

Kanauchi M., Bamforth C. A Challenge in the study of flavour instability. Mon. Brauwiss. 2018;71:82–84.

Stewart G.G. The Stability and Shelf Life of Food. Elsevier; London, UK: 2016. Beer Shelf Life and Stability; pp. 293–309.

Jaskula-Goiris B., De Causmaecker B., De Rouck G., Aerts G., Paternoster A., Braet J., De Cooman L. Influence of transport and storage conditions on beer quality and flavour stability. J. Inst. Brew. 2019;125:60–68. doi: 10.1002/jib.535. DOI

Begrow W. Fighting quality threats: Notable microbiological contaminations of craft beer in the United States. Brew. Beverage Ind. Int. 2017;5:10–13.

Franchi M.A., Tribst A.A.L., Cristianini M. Effects of high pressure homogenization on beer quality attributes. J. Inst. Brew. 2011;117:195–198. doi: 10.1002/j.2050-0416.2011.tb00460.x. DOI

Perez-Lamela C., Reed R., Simal-Gándara J. High pressure application to wort and beer. Deut. Lebensm-Rundsch. 2004;100:52–56.

Moreno F.J., Molina E., Olano A., López-Fandiño R. High-pressure effects on Maillard reaction between glucose and lysine. J. Agric. Food Chem. 2003;51:394–400. doi: 10.1021/jf025731s. PubMed DOI

Kuchel L., Brody A.L., Wicker L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006;19:25–32. doi: 10.1002/pts.705. DOI

Driscoll M., Ramsay C., Hulse G., Simpson W. A method of detecting autolysis of brewers’ yeast by measurement of extracellular adenylate kinase activity. J. Am. Soc. Brew. Chem. 2002;60:176–180. doi: 10.1094/ASBCJ-60-0176. DOI

Parr C.L., Keates R.A., Bryksa B.C., Ogawa M., Yada R.Y. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast. 2007;24:467–480. doi: 10.1002/yea.1485. PubMed DOI

Andrés-Iglesias C., Nešpor J., Karabín M., Montero O., Blanco C.A., Dostálek P. Comparison of carbonyl profiles from Czech and Spanish lagers: Traditional and modern technology. Lwt-Food Sci. Technol. 2016;66:390–397.

Baert J.J., De Clippeleer J., Hughes P.S., De Cooman L., Aerts G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012;60:11449–11472. doi: 10.1021/jf303670z. PubMed DOI

Saison D., De Schutter D.P., Delvaux F., Delvaux F.R. Improved flavor stability by aging beer in the presence of yeast. J. Am. Soc. Brew. Chem. 2011;69:50–56. doi: 10.1094/ASBCJ-2011-0127-01. DOI

Chen E.C.-H., Jamieson A., Van Gheluwe G. The release of fatty acids as a consequence of yeast autolysis. J. Am. Soc. Brew. Chem. 1980;38:13–18. doi: 10.1094/ASBCJ-38-0013. DOI

Molina-García A.D. The effect of hydrostatic pressure on biological systems. Biotechnol. Genet. Eng. Rev. 2002;19:3–54. doi: 10.1080/02648725.2002.10648021. PubMed DOI

Olšovská J., Čejka P., Sigler K., Hönigová V. The phenomenon of Czech beer: A review. Czech. J. Food Sci. 2014;32:309–319. doi: 10.17221/455/2013-CJFS. DOI

Chen Y., Song L., Han Y., Liu M., Gong R., Luo W., Guo X., Xiao D. Decreased proteinase a excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2017;44:149–159. doi: 10.1007/s10295-016-1868-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...