Application of High-Pressure Processing to Assure the Storage Stability of Unfiltered Lager Beer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TE02000177
Technology Agency of the Czech Republic
PubMed
32455848
PubMed Central
PMC7287966
DOI
10.3390/molecules25102414
PII: molecules25102414
Knihovny.cz E-zdroje
- Klíčová slova
- high-pressure processing, pascalization, shelf-life, unfiltered beer,
- MeSH
- filtrace normy MeSH
- lidé MeSH
- pivo * MeSH
- skladování potravin metody normy MeSH
- tlak MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Due to the increasing popularity of unfiltered beer, new methods for its preservation are needed. High-pressure processing (HPP) was applied as a final treatment of packed beer in order to assure storage stability and to retain the desired product quality. Pressures of 250 MPa and 550 MPa for 5 min were used to process unfiltered lager beers. The impact of pressure on basic analytical characteristics was evaluated, and foam stability, the content of carbonyl compounds and sensory properties were monitored during two months of storage. Most of the basic analytical parameters remained unaffected after pressure treatment, and a beneficial effect on foam stability was demonstrated. Changes in the concentration of staling aldehydes were observed during storage. Some features of the sensory profile were affected by HPP as well as by the time of storage. Our study evaluated the suitability of HPP as a novel method for shelf-life extension of unfiltered lager beer.
Zobrazit více v PubMed
Gómez-Corona C., Escalona-Buendía H.B., García M., Chollet S., Valentin D. Craft vs. industrial: Habits, attitudes and motivations towards beer consumption in Mexico. Appetite. 2016;96:358–367. PubMed
Mastanjević K., Krstanović V., Lukinac J., Jukić M., Lučan M., Mastanjević K. Craft brewing–is it really about the sensory revolution? Kvas. Prum. 2019;65:13–16. doi: 10.18832/kp2019.65.13. DOI
Bamforth C.W. Nutritional aspects of beer—A review. Nutr. Res. 2002;22:227–237. doi: 10.1016/S0271-5317(01)00360-8. DOI
Ferreira I., Pinho O., Vieira E., Tavarela J. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010;21:77–84. doi: 10.1016/j.tifs.2009.10.008. DOI
Stier H., Ebbeskotte V., Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1, 3/1, 6-D-glucan. Nutr. J. 2014;13:38. doi: 10.1186/1475-2891-13-38. PubMed DOI PMC
Giannetti V., Mariani M.B., Torrelli P., Marini F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019;149:103991. doi: 10.1016/j.microc.2019.103991. DOI
Donadini G., Porretta S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017;91:183–198. doi: 10.1016/j.foodres.2016.11.043. PubMed DOI
Choi D.Y., Stack M.H. The all-American beer: A case of inferior standard (taste) prevailing? Bus. Horiz. 2005;48:79–86. doi: 10.1016/j.bushor.2004.10.016. DOI
Vanderhaegen B., Neven H., Verachtert H., Derdelinckx G. The chemistry of beer aging–a critical review. Food Chem. 2006;95:357–381. doi: 10.1016/j.foodchem.2005.01.006. DOI
Wray E. Brewing Microbiology. Elsevier; Amsterdam, The Netherlands: 2015. Reducing microbial spoilage of beer using pasteurization; pp. 253–269.
Cao L., Zhou G., Guo P., Li Y. Influence of pasteurising intensity on beer flavour stability. J. Inst. Brew. 2011;117:587–592. doi: 10.1002/j.2050-0416.2011.tb00508.x. DOI
Hoff S., Lund M.N., Petersen M.A., Frank W., Andersen M.L. Storage stability of pasteurized non-filtered beer. J. Inst. Brew. 2013;119:172–181. doi: 10.1002/jib.85. DOI
Garofalo C., Osimani A., Milanović V., Taccari M., Aquilanti L., Clementi F. The occurrence of beer spoilage lactic acid bacteria in craft beer production. J. Food Sci. 2015;80:M2845–M2852. doi: 10.1111/1750-3841.13112. PubMed DOI
Maifreni M., Frigo F., Bartolomeoli I., Buiatti S., Picon S., Marino M. Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control. 2015;50:809–814. doi: 10.1016/j.foodcont.2014.10.032. DOI
Huang H.-W., Wu S.-J., Lu J.-K., Shyu Y.-T., Wang C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control. 2017;72:1–8. doi: 10.1016/j.foodcont.2016.07.019. DOI
Muntean M.-V., Marian O., Barbieru V., Cătunescu G.M., Ranta O., Drocas I., Terhes S. High pressure processing in food industry–characteristics and applications. Agric. Agric. Sci. Procedia. 2016;10:377–383. doi: 10.1016/j.aaspro.2016.09.077. DOI
Kurowska A., Szajkowska A., van der Meulen B. High Pressure Processing of Food. Springer; Berlin, Germany: 2016. EU regulatory approach to high-pressure processing; pp. 717–732.
Santos L.M., Oliveira F.A., Ferreira E.H., Rosenthal A. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review. Food Sci. Technol. Int. 2017;23:561–581. doi: 10.1177/1082013217714670. PubMed DOI
Buzrul S., Alpas H., Bozoglu F. Effect of high hydrostatic pressure on quality parameters of lager beer. J. Sci. Food Agric. 2005;85:1672–1676. doi: 10.1002/jsfa.2166. DOI
Castellari M., Arfelli G., Riponi C., Carpi G., Amati A. High hydrostatic pressure treatments for beer stabilization. J. Food Sci. 2000;65:974–977. doi: 10.1111/j.1365-2621.2000.tb09402.x. DOI
Yin H., Dong J., Yu J., Chang Z., Qian Z., Liu M., Huang S., Hu X., Liu X., Deng Y. A preliminary study about the influence of high hydrostatic pressure processing on the physicochemical and sensorial properties of a cloudy wheat beer. J. Inst. Brew. 2016;122:462–467. doi: 10.1002/jib.344. DOI
Daher D., Le Gourrierec S., Pérez-Lamela C. Effect of high-pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agriculture. 2017;7:72. doi: 10.3390/agriculture7090072. DOI
Hartmann C., Mathmann K., Delgado A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2006;7:1–12. doi: 10.1016/j.ifset.2005.06.005. DOI
Perrier-Cornet J.M., Hayert M., Gervais P. Yeast cell mortality related to a high-pressure shift: Occurrence of cell membrane permeabilization. J. Appl. Microbiol. 1999;87:1–7. doi: 10.1046/j.1365-2672.1999.00779.x. PubMed DOI
Evans D.E., Bamforth C.W. Beer: A Quality Perspective. Master Brewers Association of Americas; Madison, WI, USA: 2009. Beer foam: Achieving a suitable head; pp. 1–60.
Kosin P., Branyik T., Savel J., Ulmann F., Vlcek J. Use of Sorbents to Increase Beer Foam Stability. J. Am. Soc. Brew. Chem. 2018;76:58–61. doi: 10.1080/03610470.2017.1398565. DOI
He G.-Q., Wang Z.-Y., Liu Z.-S., Chen Q.-H., Ruan H., Schwarz P.B. Relationship of proteinase activity, foam proteins, and head retention in unpasteurized beer. J. Am. Soc. Brew. Chem. 2006;64:33–38. doi: 10.1094/ASBCJ-64-0033. DOI
Kanauchi M., Bamforth C. A Challenge in the study of flavour instability. Mon. Brauwiss. 2018;71:82–84.
Stewart G.G. The Stability and Shelf Life of Food. Elsevier; London, UK: 2016. Beer Shelf Life and Stability; pp. 293–309.
Jaskula-Goiris B., De Causmaecker B., De Rouck G., Aerts G., Paternoster A., Braet J., De Cooman L. Influence of transport and storage conditions on beer quality and flavour stability. J. Inst. Brew. 2019;125:60–68. doi: 10.1002/jib.535. DOI
Begrow W. Fighting quality threats: Notable microbiological contaminations of craft beer in the United States. Brew. Beverage Ind. Int. 2017;5:10–13.
Franchi M.A., Tribst A.A.L., Cristianini M. Effects of high pressure homogenization on beer quality attributes. J. Inst. Brew. 2011;117:195–198. doi: 10.1002/j.2050-0416.2011.tb00460.x. DOI
Perez-Lamela C., Reed R., Simal-Gándara J. High pressure application to wort and beer. Deut. Lebensm-Rundsch. 2004;100:52–56.
Moreno F.J., Molina E., Olano A., López-Fandiño R. High-pressure effects on Maillard reaction between glucose and lysine. J. Agric. Food Chem. 2003;51:394–400. doi: 10.1021/jf025731s. PubMed DOI
Kuchel L., Brody A.L., Wicker L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006;19:25–32. doi: 10.1002/pts.705. DOI
Driscoll M., Ramsay C., Hulse G., Simpson W. A method of detecting autolysis of brewers’ yeast by measurement of extracellular adenylate kinase activity. J. Am. Soc. Brew. Chem. 2002;60:176–180. doi: 10.1094/ASBCJ-60-0176. DOI
Parr C.L., Keates R.A., Bryksa B.C., Ogawa M., Yada R.Y. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast. 2007;24:467–480. doi: 10.1002/yea.1485. PubMed DOI
Andrés-Iglesias C., Nešpor J., Karabín M., Montero O., Blanco C.A., Dostálek P. Comparison of carbonyl profiles from Czech and Spanish lagers: Traditional and modern technology. Lwt-Food Sci. Technol. 2016;66:390–397.
Baert J.J., De Clippeleer J., Hughes P.S., De Cooman L., Aerts G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012;60:11449–11472. doi: 10.1021/jf303670z. PubMed DOI
Saison D., De Schutter D.P., Delvaux F., Delvaux F.R. Improved flavor stability by aging beer in the presence of yeast. J. Am. Soc. Brew. Chem. 2011;69:50–56. doi: 10.1094/ASBCJ-2011-0127-01. DOI
Chen E.C.-H., Jamieson A., Van Gheluwe G. The release of fatty acids as a consequence of yeast autolysis. J. Am. Soc. Brew. Chem. 1980;38:13–18. doi: 10.1094/ASBCJ-38-0013. DOI
Molina-García A.D. The effect of hydrostatic pressure on biological systems. Biotechnol. Genet. Eng. Rev. 2002;19:3–54. doi: 10.1080/02648725.2002.10648021. PubMed DOI
Olšovská J., Čejka P., Sigler K., Hönigová V. The phenomenon of Czech beer: A review. Czech. J. Food Sci. 2014;32:309–319. doi: 10.17221/455/2013-CJFS. DOI
Chen Y., Song L., Han Y., Liu M., Gong R., Luo W., Guo X., Xiao D. Decreased proteinase a excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2017;44:149–159. doi: 10.1007/s10295-016-1868-x. PubMed DOI