Advanced procedures for skull sex estimation using sexually dimorphic morphometric features

. 2020 Sep ; 134 (5) : 1927-1937. [epub] 20200605

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32504147

Grantová podpora
Erasmus+ internship: 7026/2018 State Scholarships Foundation

Odkazy

PubMed 32504147
DOI 10.1007/s00414-020-02334-9
PII: 10.1007/s00414-020-02334-9
Knihovny.cz E-zdroje

This paper introduces an automated method for estimating sex from cranial sex diagnostic traits by extracting and evaluating specialized morphometric features from the glabella, the supraorbital ridge, the occipital protuberance, and the mastoid process. The proposed method was developed and evaluated using two European population samples, a Czech sample comprising 170 crania reconstructed from anonymized CT scans and a Greek sample of 156 crania from the Athens Collection. It is based on a fully automatic algorithm applied on 3D models for extracting sex diagnostic morphometric features which are further processed by computer vision and machine learning algorithms. Classification accuracy was evaluated in a population specific and a population generic 2-way cross-validation scheme. Population-specific accuracy for individual morphometric features ranged from 78.5 to 96.7%, whereas population generic correct classification ranged from 71.7 to 90.8%. Combining all sex diagnostic traits in multi-feature sex estimation yielded correct classification performance in excess of 91% for the entire sample, whereas the sex of about three fourths of the sample could be determined with 100% accuracy according to posterior probability estimates. The proposed method provides an efficient and reliable way to estimate sex from cranial remains, and it offers significant advantages over existing methods. The proposed method can be readily implemented with the skullanalyzer computer program and the estimate_sex.m GNU Octave function, which are freely available under a suitable license.

Zobrazit více v PubMed

Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168. https://doi.org/10.1002/ajpa.10012 PubMed DOI

Nikita E, Michopoulou E (2018) A quantitative approach for sex estimation based on cranial morphology. Am J Phys Anthropol 165:507–517. https://doi.org/10.1002/ajpa.23376 PubMed DOI

Bertsatos A, Papageorgopoulou C, Valakos E, Chovalopoulou M-E (2018) Investigating the sex-related geometric variation of the human cranium. Int J Legal Med 132:1505–1514. https://doi.org/10.1007/s00414-018-1790-z PubMed DOI

Walker PL (2008) Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol 136:39–50. https://doi.org/10.1002/ajpa.20776 PubMed DOI

Oikonomopoulou E-K, Valakos E, Nikita E (2017) Population-specificity of sexual dimorphism in cranial and pelvic traits: evaluation of existing and proposal of new functions for sex assessment in a Greek assemblage. Int J Legal Med 131:1731–1738. https://doi.org/10.1007/s00414-017-1655-x PubMed DOI

Bruzek J, Murail P (2006) Methodology and reliability of sex determination from the skeleton. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine. Humana Press, Totowa, NJ, pp 225–242 DOI

Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296. https://doi.org/10.1111/j.1556-4029.2010.01635.x PubMed DOI

Williams BA, Rogers TL (2006) Evaluating the accuracy and precision of cranial morphological traits for sex determination. J Forensic Sci 51:729–735. https://doi.org/10.1111/j.1556-4029.2006.00177.x PubMed DOI

Krüger GC, L’Abbé EN, Stull KE, Kenyhercz MW (2015) Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med 129:869–875. https://doi.org/10.1007/s00414-014-1111-0 PubMed DOI

Langley NR, Dudzik B, Cloutier A (2018) A decision tree for nonmetric sex assessment from the skull. J Forensic Sci 63:31–37. https://doi.org/10.1111/1556-4029.13534 PubMed DOI

Godde K, Thompson MM, Hens SM (2018) Sex estimation from cranial morphological traits: use of the methods across American Indians, modern North Americans, and ancient Egyptians. HOMO 69:237–247. https://doi.org/10.1016/j.jchb.2018.09.003 PubMed DOI

Kranioti EF, İşcan MY, Michalodimitrakis M (2008) Craniometric analysis of the modern Cretan population. Forensic Sci Int 180:110.e1–110.e5. https://doi.org/10.1016/j.forsciint.2008.06.018 DOI

Franklin D, Cardini A, Flavel A, Kuliukas A (2013) Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int 229:158.e1–158.e8. https://doi.org/10.1016/j.forsciint.2013.03.005 DOI

Casado AM (2017) Quantifying sexual dimorphism in the human cranium: a preliminary analysis of a novel method. J Forensic Sci 62:1259–1265. https://doi.org/10.1111/1556-4029.13441 PubMed DOI

Bigoni L, Velemínská J, Brůžek J (2010) Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex. HOMO 61:16–32. https://doi.org/10.1016/j.jchb.2009.09.004 PubMed DOI

Chovalopoulou M-E, Valakos ED, Manolis SK (2013) Sex determination by three-dimensional geometric morphometrics of the palate and cranial base. Anthropol Anz 70:407–425. https://doi.org/10.1127/0003-5548/2013/0363 PubMed DOI

Chovalopoulou M-E, Valakos ED, Manolis SK (2016) Sex determination by three-dimensional geometric morphometrics of the vault and midsagittal curve of the neurocranium in a modern Greek population sample. HOMO 67:173–187. https://doi.org/10.1016/j.jchb.2015.09.007 PubMed DOI

Chovalopoulou M-E, Valakos ED, Manolis SK (2016) Sex determination by three-dimensional geometric morphometrics of craniofacial form. Anthropol Anz 73:195–206. https://doi.org/10.1127/anthranz/2016/0470 PubMed DOI

Gao H, Geng G, Yang W (2018) Sex determination of 3D skull based on a novel unsupervised learning method. Comput Math Methods Med 2018:1–10. https://doi.org/10.1155/2018/4567267 DOI

Čechová M, Dupej J, Brůžek J, Bejdová Š, Horák M, Velemínská J (2019) Sex estimation using external morphology of the frontal bone and frontal sinuses in a contemporary Czech population. Int J Legal Med 133:1285–1294. https://doi.org/10.1007/s00414-019-02063-8 PubMed DOI

Garvin HM, Ruff CB (2012) Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147:661–670. https://doi.org/10.1002/ajpa.22036 PubMed DOI

Schlager S, Rüdell A (2017) Sexual dimorphism and population affinity in the human zygomatic structure-comparing surface to outline data: analyzing zygomatic shape. Anat Rec 300:226–237. https://doi.org/10.1002/ar.23450 DOI

Bejdová Š, Dupej J, Krajíček V, Velemínská J, Velemínský P (2018) Stability of upper face sexual dimorphism in central European populations (Czech Republic) during the modern age. Int J Legal Med 132:321–330. https://doi.org/10.1007/s00414-017-1625-3 PubMed DOI

Luo L, Wang M, Tian Y, Duan F, Wu Z, Zhou M, Rozenholc Y (2013) Automatic sex determination of skulls based on a statistical shape model. Comput Math Methods Med 2013:1–6. https://doi.org/10.1155/2013/251628 DOI

Arigbabu OA, Liao IY, Abdullah N, Mohamad Noor MH (2017) Computer vision methods for cranial sex estimation. IPSJ Trans Comput Vis Appl 9:19. https://doi.org/10.1186/s41074-017-0031-6 DOI

Walrath DE, Turner P, Bruzek J (2004) Reliability test of the visual assessment of cranial traits for sex determination. Am J Phys Anthropol 125:132–137. https://doi.org/10.1002/ajpa.10373 PubMed DOI

Lewis CJ, Garvin HM (2016) Reliability of the Walker cranial nonmetric method and implications for sex estimation. J Forensic Sci 61:743–751. https://doi.org/10.1111/1556-4029.13013 PubMed DOI

Fruciano C (2016) Measurement error in geometric morphometrics. Dev Genes Evol 226:139–158. https://doi.org/10.1007/s00427-016-0537-4 PubMed DOI

Shearer BM, Cooke SB, Halenar LB, Reber SL, Plummer JE, Delson E, Tallman M (2017) Evaluating causes of error in landmark-based data collection using scanners. PLoS One 12:e0187452. https://doi.org/10.1371/journal.pone.0187452 PubMed DOI PMC

Bertsatos A, Athanasopoulou K, Chovalopoulou M-E (2019) Estimating sex using discriminant analysis of mandibular measurements from a modern Greek sample. Egypt J Forensic Sci 9:25. https://doi.org/10.1186/s41935-019-0133-7 DOI

Noble J, Flavel A, Aviv R, Franklin D (2019) Forensic anthropological standards for cranial sex estimation in Canada: preliminary results. Aust J Forensic Sci 51:S1–S4. https://doi.org/10.1080/00450618.2019.1569720 DOI

Kanchan T, Gupta A, Krishan K (2013) Estimation of sex from mastoid triangle – a craniometric analysis. J Forensic Legal Med 20:855–860. https://doi.org/10.1016/j.jflm.2013.06.016 DOI

Petaros A, Sholts SB, Slaus M, Bosnar A, Wärmländer SKTS (2015) Evaluating sexual dimorphism in the human mastoid process: a viewpoint on the methodology. Clin Anat 28:593–601. https://doi.org/10.1002/ca.22545 PubMed DOI

Shearer BM, Sholts SB, Garvin HM, Wärmländer SKTS (2012) Sexual dimorphism in human browridge volume measured from 3D models of dry crania: a new digital morphometrics approach. Forensic Sci Int 222:400.e1–400.e5. https://doi.org/10.1016/j.forsciint.2012.06.013 DOI

Nikita E (2019) Quantitative sex estimation based on cranial traits using R functions. J Forensic Sci 64:175–180. https://doi.org/10.1111/1556-4029.13833 PubMed DOI

Yang W, Liu X, Wang K, Hu J, Geng G, Feng J (2019) Sex determination of three-dimensional skull based on improved backpropagation neural network. Comput Math Methods Med 2019:1–8. https://doi.org/10.1155/2019/9163547 DOI

Yang W, Zhou M, Zhang P, Geng G, Liu X, Zhang H (2020) Skull sex estimation based on wavelet transform and Fourier transform. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/8608209 DOI

Eliopoulos C, Lagia A, Manolis S (2007) A modern, documented human skeletal collection from Greece. HOMO 58:221–228. https://doi.org/10.1016/j.jchb.2006.10.003 PubMed DOI

Bertsatos A, Gkaniatsou E, Papageorgopoulou C, Chovalopoulou M-E (2019) “What and how should we share?” An inter-method inter-observer comparison of measurement error with landmark-based craniometric datasets. Anthropol Anz 92489. https://doi.org/10.1127/anthranz/2019/1047

Cignoni P, Callieri M, Corsini M, et al (2008) MeshLab: an open-source mesh processing tool. Eurographics Ital chapter Conf 8 pages. https://doi.org/10.2312/LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136

Mineo C, Pierce SG, Nicholson PI, Cooper I (2016) Robotic path planning for non-destructive testing – a custom MATLAB toolbox approach. Robot Comput Integr Manuf 37:1–12. https://doi.org/10.1016/j.rcim.2015.05.003 DOI

Mineo C, Pierce SG, Nicholson PI, Cooper I (2017) Introducing a novel mesh following technique for approximation-free robotic tool path trajectories. J Comput Des Eng 4:192–202. https://doi.org/10.1016/j.jcde.2017.01.002 DOI

Mineo C, Pierce SG, Summan R (2019) Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction. J Comput Des Eng 6:81–91. https://doi.org/10.1016/j.jcde.2018.02.001 DOI

Bertsatos A (2019) Skullanalyzer: a concrete way of extracting cranial morphometric features. Zenodo. https://doi.org/10.5281/zenodo.3594565

Bertsatos A (2019) User Manual & Algorithm Description Document “skullanalyzer” v1.0. Zenodo. https://doi.org/10.5281/zenodo.3519248

Eaton JW, Bateman D, Hauberg S, Wehbring R (2019) GNU Octave version 5.1.0 manual: a high-level interactive language for numerical computations

Bertsatos A, Chovalopoulou M-E, Brůžek J, Bejdová S (2020) Cranial morphometric features from Greek and Czech population samples. Zenodo. https://doi.org/10.5281/zenodo.3632180

Bertsatos A, Chovalopoulou M-E (2018) Secular change in adult stature of modern Greeks. Am J Hum Biol 30:e23077. https://doi.org/10.1002/ajhb.23077 DOI

Han H, Jiang X (2014) Overcome support vector machine diagnosis overfitting. Cancer Inform 13s1:CIN.S13875. https://doi.org/10.4137/CIN.S13875

Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2004) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535. https://doi.org/10.1359/JBMR.041005 PubMed DOI

Brůžek J, Santos F, Dutailly B, Murail P, Cunha E (2017) Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J Phys Anthropol 164:440–449. https://doi.org/10.1002/ajpa.23282 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...